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Abstract

Firm creation is central to many theories of economic growth. I show using U.S. Census mi-
crodata that new firms play a dominant role in the growth of local areas, such as cities and
counties. Entry is very persistent at the local level, and variation in this extensive margin ac-
counts for most of long-term employment growth. In contrast, the firm lifecycle is invariant
across space. I rationalize these findings in a simple theory of variety-led growth, in which firm
creation amplifies and propagates local shocks. New firms raise wages and attract new work-
ers, whose spending spurs the creation of more new firms. I estimate the model exploiting
changes in local demand driven by aggregate structural change, and find that this feedback is
quantitatively powerful. Using the model, I show that the employment effects of the decline of
manufacturing in the U.S. Rustbelt have been greatly amplified by a substantial startup deficit.
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1. INTRODUCTION

Many theories of economic growth give a prominent role to firm creation. New firms are thought
to introduce new products, engage in creative destruction and speed idea diffusion. New firms
also feature prominently in the data: high rates of entry and exit are common, and many studies
attribute significant fractions of job creation and productivity growth to new firms.

In this paper, I show that the same force shapes the fates of cities and local areas. There is a large
amount of variation in long-run employment and wage growth at the local level.1 Some places
grow quickly for many years, and some stagnate. I offer new evidence that the rate of local firm
creation is central to explaining these differences.

I begin by using U.S. Census microdata to document three facts about firm creation and local
growth. First, places with high initial startup rates see long periods of growth in employment
and wages. Second, most of this growth is accounted for by the continued entry of new firms.
Startup rates are very persistent, and local incumbents uniformly shed employment as a group.
Third, as places grow larger, they do not become more likely to host fast-growing firms. Firms and
establishments in dense areas do not grow faster, exit faster, or see divergence in wages or sales
per worker. The firm lifecycle is mostly invariant across space.

These facts place tight restrictions on theories of local growth. In particular, theories that empha-
size creative destruction and idea diffusion are at odds with the second and third facts. Most of the
variation in growth at the local level comes from the extensive entry margin, not from the behavior
of incumbents.

Rationalizing persistent differences in firm creation is then the primary task in explaining local
growth. In this paper, I study the role new firms play in propagating local shocks. I present a
simple dynamic model of monopolistic competition and specialization in space. In the model, a
new firm brings a new idea or product to the area, which raises local productivity. This increases
wages, and attracts more workers to the area. In turn, these new workers increase demand for all
local firms, spurring the creation of new entrants.

The feedback between firm creation and labor mobility helps explain how both growth and entry
at the local level can be so persistent. To an extent, local booms can feed themselves. New firms
create externalities for other entrants through their effect on local demand. In this way, shocks to
locations are amplified and propagated by the process of firm creation.

As an example, consider the growth of Deschutes County, in central Oregon. Formed in 1916,
Deschutes became known in the early 1990’s for its outdoor lifestyle and environmental amenities,
attracting a host of new residents.2 A larger population needed new restaurants, retail outlets, and
medical services, all of which saw a 300% increase in new establishments between 1990 and 2015.

1From 1975-2015, mean cumulative employment growth at the commuting zone level was 108%, with a standard
deviation of 105%. More detail is given in Appendix A.1.

2The population grew from 76,000 in 1990 to 174,000 in 2015. The Economist (2007, Jan 25th) credits the end of the
county’s logging industry for the initial boom in those searching for outdoor lifestyles.
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All this new business activity raised the demand for professional and technical services: architects,
lawyers, and accounting firms saw a six-fold increase in new business formation, with finance and
insurance not far behind. Construction, specialized manufacturing, and transportation all saw
entry rates far above state and national trends. Wages rose abruptly, and employment growth
rates among the highest in the nation have been sustained for many years.

However, the same process can run in reverse, particularly when a place is exposed to macroeco-
nomic shifts. Gary, Indiana, was incorporated by the U.S. Steel Company in 1906, and experienced
strong population growth for decades on the back of rising steel output. In the 1970’s, falling global
demand for steel and heightened foreign competition led to large reductions in local steel-making
employment (Tarr, 1988). This decline was accompanied by a collapse in business formation across
a broad range of industries. The population began to shrink, and Gary continued to experience
losses in employment and population long after steel-making employment stabilized.

The theory I develop provides a qualitative account of such persistent, creation-fueled propaga-
tion. I then estimate the strength of propagation using microdata for the full U.S. geography. In
order to estimate the model I face a central identification challenge. Firms are forward looking,
and unobserved shocks that affect future local growth will also affect their startup decisions. This
confounds a naive causal interpretation of the correlation between entry and growth.

To gain identification, I expand on Gary’s experience, and isolate a series of demand shifters for
firm creation driven by aggregate structural change. The U.S. has seen a large decline in man-
ufacturing employment in recent decades. This decline had a significant local dimension: areas
specialized in manufacturing activity in 1975 saw much slower growth in total employment over
the subsequent 40 years. I show new evidence that these regions also saw reduced rates of firm
creation across all sectors, and particularly in sectors that catered to local demand.

I use the structure of the model to provide a set of moment conditions for estimation, exploiting
a counterfactual prediction for local demand were the only changes since 1975 to have come from
an aggregate shock to manufacturing. These conditions are used to estimate the key structural
parameters of the model. In doing so, I build off a burgeoning literature employing such model-
optimal instruments (following Adao et al. (2019) and Allen et al. (2019); see Faber and Gaubert
(2019) and Allen and Donaldson (2018) for recent applications).3

There are three key results. First, the estimated model attributes an important role for firm creation
in shaping subsequent growth. A subsidy that increases the number of local firms by 10% increases
long-run employment by 4% and wages by 3%. The full dynamics of firm creation are slow; it
takes five years for half of the effects of a permanent shock to be felt. Moreover, there is substantial
feedback from labor mobility: shutting down movement of people across space lowers the local
wage growth attributable to firm creation by almost half. Newcomers generate local demand that
spurs new firm creation, productivity and wage growth, and more labor demand.

3This strategy also relates to the widespread use of Bartik industry shocks in reduced form work. However, it is
distinct in that it fully specifies the mechanisms by which aggregate structural change impacts the macroeconomy and
local activity, and is transparent about what the moment conditions require for identification of structural parameters.
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Second, I show that to understand recent U.S. structural change, considering firm creation dy-
namics is paramount. The model reveals that a start-up deficit has amplified the employment gap
between the Rustbelt commuting zones and the growing regions of the U.S. by almost 50% in the
last four decades. This indirect effect has been almost as important as the direct shock to manufac-
turing that started the decline of the Rustbelt.

Finally, I offer an insight for aggregate growth. Recent studies have concluded that most aggregate
growth is driven by incumbent innovation, with new firm entry playing a minor role (Garcia-
Macia et al., 2019). This result relies on the fact that most entrants are small in the data. I show
that such conclusions are premature. In most commuting zones, most of the time, a significant
fraction of wage growth is accounted for by variety gains from firm creation. The expansion in
industry variety at the local level also accounts for a significant fraction of aggregate wage growth
in the U.S. in recent decades. Most commuting zones have grown larger in this period, and have
reaped variety gains from a larger number of local firms, with this driving wage growth for the
whole economy.

Related Literature. Growth theory stresses the importance of new firms to aggregate growth.
Three core channels have been emphasized. First, new firms introduce new ideas and new prod-
ucts a la. Romer (1990). In the vast expanding variety literature, a wider range of products in-
creases productivity through specialization, and the size of the market determines the range of
ideas adopted. I argue that this mechanism also describes well the dynamics of the spatial data.

Second, new firms improve upon the products of existing firms in models of creative destruction
(Grossman and Helpman, 1991; Aghion and Howitt, 1992; Klette and Kortum, 2004; Lentz and
Mortensen, 2008; Peters and Walsh, 2019). In these models, entrant firms benefit from research
spillovers from industry leaders, and can leapfrog and displace incumbent firms. Third, and relat-
edly, recent work has studied the role new firms play in diffusing frontier technologies. Sampson
(2016) models a process where entrant firms can learn from the whole distribution of incumbent
productivity.4 While entrants don’t directly replace incumbents, competition for scarce factors of
production drives out the least productive and improves average productivity, much like in the
static Melitz (2003) model.

Distinguishing the relative importance of these margins can be difficult. Most papers rely on de-
compositions based on calibrated models of firm behavior (Lentz and Mortensen, 2008; Asturias
et al., 2017; Atkeson and Burstein, 2018; Garcia-Macia et al., 2019). Considering the spatial dimen-
sion of firm creation provides a new way to discriminate between the importance of these three
theories. As I discuss below, the second and third strands of growth theory make core predictions
that are at odds with the spatial data.

I also make contact with a large literature in macroeconomics using spatial variation to study ag-
gregate questions. For example, many studies of the fiscal multiplier use cross-regional evidence
to discipline estimates of the response of economic activity to government spending shocks (e.g.

4Related models are presented in Perla and Tonetti (2014) and Lucas and Moll (2014).
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Nakamura and Steinsson (2014), see Chodorow-Reich (2019) for a review). For the most part, the
growth literature has not explored the full range of geographic data available. A small number
of papers have studied the contribution of firm creation to local growth (see Glaeser et al. (2010);
Gourio et al. (2016); Carlino and Drautzburg (2017)). Glaeser et al. (2015) instrument for the pres-
ence of startups with the locations of historical mines, and find an important role for startups
in explaining cross-sectional patterns of growth. This paper is also related to the work of Peters
(2016), who considers the relationship between shifts in factor supplies and firm entry using data
on the large-scale reallocation of German refugees after World War 2. A similar mechanism is at
work there: inflows of people into a location will act as a spur to the demand for new firms, and
via increasing returns raise wages in the long run.

The dynamic theory I propose has a long tradition in economic geography. Myrdal (1957) dis-
cusses a process of “circular causation”, where local shocks are amplified by investment and local
demand, in what is perhaps the earliest verbal description of the core idea in this paper. A similar
logic is at work in the canonical geography model of Krugman (1991). However, explicit modeling
of growth dynamics has been limited outside of stylized, stationary environments5 (notable ex-
ceptions are Desmet et al. (2018) and Nagy (2017), who develop rich models of spatial innovation
and production). This has constrained the extent to which one could discuss the dynamic effects of
firm creation, and just as importantly, the ability to measure these effects with new micro-data sets.
The theory here models non-stationary environments with a rich geography, and is more suited to
empirical analysis.

My work also relates to a broad literature dealing with the decline of manufacturing in the U.S.
(see Fort et al. (2018) for a review). While incorporating aggregate structural change into the model
disciplines the quantitative estimates, it also provides novel insights into how structural change
operates. The firm creation margin amplifies and propagates the local decline of manufacturing,
hastening the reallocation of workers across space. This indirect effect is common in stories in the
popular press, but absent from any economic models of which I am aware.

2. THREE FACTS ABOUT FIRM CREATION AND LOCAL GROWTH

In this section, I document three central facts about local growth and firm creation. These facts
show that variation in the firm creation margin is central in accounting for differences in growth
across space.

The analysis uses the U.S. Census’ Longitudinal Business Database (LBD), which contains infor-
mation on every private employer establishment in the U.S. since 1978. In particular, it contains
information on annual employment, annual payroll, 6-digit industry and the address of each es-
tablishment, along with longitudinal links at the firm level that allows me to track a record of

5See influential early work in Black and Henderson (1999), Fujita and Thisse (2003) and reviews in Duranton and
Puga (2014). A recent paper by Greaney (2019) studies the distributional consequences of local growth in quantitative
settings with asset accumulation.
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ownership. I add new information on sales from the Business Register to this dataset, following
Moreira (2015) and Haltiwanger et al. (2016). The Business Register is the Census’ master estab-
lishment list for every establishment in the U.S., and contains information on the revenues of the
parent companies from IRS administrative tax data. These sales are only available at the firm level,
and I discuss in the Appendix several methods of apportioning sales among establishments for
multi-establishment firms.

I focus on two primary local geographic units throughout the paper: commuting zones and coun-
ties.6 Both form a complete partition of the U.S. geography, and cover large and small cities, towns,
and rural areas (in contrast to administrative boundaries such as Metropolitan Statistical Areas).
The documented facts and results do not depend materially on the choice of geography.

Fact 1: Places with high initial start-up rates experience high long-term growth in em-
ployment and wages.

I first use the LBD to calculate local-level measures of employment and total wage bill by aggre-
gating establishment-level headcount and payroll in each year. This gives both a county and com-
muting zone panel for the full U.S. geography. In Figure 1, I regress 10-year forward log changes
in employment at the local level on 20 quantiles of the startup percentage at year t, for the decades
beginning in 1980, 1990 and 2000. I define the start-up percentage as the fraction of establishments
in that location who are of age 0 or age 1 in year t. Employment growth varies substantially among
these quantiles. In areas with high numbers of startups, employment growth is predicted to be al-
most 30% over the subsequent ten years. This drops to around 10% for areas with a low proportion
of startups.

In Table 2 in Appendix A.2 I reestimate this relationship with various controls, including local in-
dustry shares and local fixed effects. I then restrict the analysis to true new firms by excluding new
establishments from existing, multi-establishment firms. Furthermore, I show an estimate of the
conditional distribution using quantile regressions. The conclusion is unchanged: there is a strong
positive relationship between future employment growth and the initial start-up percentage.

I finally show that the same is true for average wage growth in Table 3 in Appendix A.3. Over a ten
year horizon, commuting zones with an initial startup rate in the upper quartile of the distribution
will see average wage growth that is 8 percentage points faster than commuting zones in the lower
quartile.

Similar findings have also been documented by Faberman (2011), who uses a more restricted
dataset from the BLS and focuses on variation in employment growth at the MSA-level. My anal-
ysis here is complementary, extending the results to a more comprehensive set of geographies and
firms, and including measures of wages.

6First constructed by Tolbert and Sizer (1996), commuting zones are now widely used in empirical work for studying
economic activity across space (see e.g. Autor and Dorn (2013)). They are defined as groups of contiguous counties
which see high proportions of cross-county commuting flows between the group. I use the 703 commuting zones
defined by the U.S. Census for the year 2000 throughout, though results are robust to using 1980 and 1990 borders.
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Figure 1: Future Employment Growth and Initial Start-up Percentage
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Note: This figure plots the coefficients of regressions of 10-year county-level (blue) and commuting zone-level (green)
employment growth on dummies for 20 quantiles of the initial start-up percentage, for the period 1980-2015. Em-
ployment growth is calculated as total percentage change in headcount at establishments in the area between any two
years. Start-up percentage is the fraction of local establishments of age zero or one. 95% confidence intervals in grey.
N = {9, 200; 2, 100} for the county and commuting zone level respectively, where these counts have been rounded to
accord with U.S. Census disclosure rules.

Fact 2: All growth in employment comes from the continued entry of new establishments.

One question that immediately arises in connection with Fact 1 is how much the initial startups
are themselves contributing to the 10-year periods of growth documented above. I first answer
this question in an accounting sense. I decompose 10-year forward employment growth rates at
the commuting zone level into separate contributions from each cohort of new establishments that
enters during these ten years, as well as a contribution from incumbent establishments. Formally,
we can write the percentage change in employment at the commuting zone level between year
t− 10 and t as

(1)
Empi,t − Empi,t−10

Empi,t−10
=

Ii,t − Ii,t−10

Ii,t−10
+ ∑

a∈{0,1,..,10}

Na
i,t

Empit−10
,

where Na
i,t is the total employment at time t in commuting zone i of firms of age a, and Ii,t is the

total employment at time t in commuting zone i of incumbents who existed 10 years prior to time
t. By this definition, incumbents may add or subtract from 10-year employment growth, but since
new firms do not exist 10 years prior, their employment at the end of the period only adds to total
growth. I then average each of these contributions to employment growth within deciles of the
start-up percentage at the commuting zone level 10 years beforehand. The results are plotted in
Figure 2.
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Figure 2: Entrant Contributions to 10-Year Employment Growth
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Note: This figure plots the contributions to future 10-year employment growth at the commuting zone level by suc-
cessive cohorts of entrants, as well as current incumbents. Areas are assigned in each year to 10 deciles of the startup
percentage over all years. Decomposition is as in equation (1). Years are from 1990-2015 (for example, 10-year growth
for 1990 is taken for the period 1980-1990). N = {24, 000}, where this count has been rounded to accord with U.S.
Census disclosure rules.

Two key points are apparent. First, areas that have high startup rates in a given year continue
seeing strong employment growth from new cohorts of startups in each one of the subsequent 10
years. While the contribution of any one year’s startups to 10-year employment growth is minor,
they accumulate over time. This illustrates a key feature of the startup rate at the local level: it
is persistent, and this persistence generates large differences between high and low startup areas
over time. To highlight this point, in Appendix A.4 I show estimates of the autocorrelation of the
local startup rate. For commuting zones, this yields values of 0.70 at a 1 year lag and 0.54 at a
10-year lag.

Second, incumbent firms who existed at the start of the period uniformly subtract from 10-year
growth as a group. While this masks a large amount of heterogeneity at the micro level (some of
these incumbent establishments exit, some grow fast and some plateau), what matters for employ-
ment growth is the total change in employment for incumbent firms. This is robustly negative,
recalling Haltiwanger et al. (2013).

Just as importantly, this negative contribution varies only slightly over the deciles of the startup
fraction 10 years beforehand. Essentially, most of the difference between high startup areas and
low startup areas is that the former continue seeing strong employment growth from the creation
of new establishments, while incumbent employment shrinks at roughly the same rate across ar-
eas. In Appendix A.2, I provide more detail on incumbent employment. There I show that the exit
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rates of incumbent establishments across space are unrelated to both the growth rate of the local
area, and the initial startup percentage.

In unpacking these dynamics, one might suspect that as areas become more populated, they attract
or produce different, potentially faster-growing establishments and firms. Jacobs (1970) argued in
her seminal work that large cities facilitate idea spillovers, and most novel ideas come from dense
urban areas. This hypothesis is canvassed by a variety of influential work in urban economics,
including Glaeser et al. (1992), Duranton and Puga (2001) and Davis and Dingel (2019). One might
then expect that firms and establishments born in a large city like New York would outperform
those born in Cleveland OH, conditional on industry. This turns out not to be true in the data.

Fact 3: The firm lifecycle is invariant across space: agglomeration effects are absent.

I break this statement into two parts. I first show that neither firms nor establishments grow their
employment faster in larger areas, conditional on survival. I then show that differences in survival
patterns are negligible between large and small areas. In the Appendix I show that average wages
and average sales mirror employment patterns.

Fact 3a: Conditional on survival, establishments and firms grow no faster in larger areas.

To show this, I calculate employment growth as log changes in employment from the previous
year, for the full sample of establishments in the LBD. Note that this is only observed if the estab-
lishment survives from one year to the next. I then estimate the following equation:

(2) ∆yit =
A

∑
a=1

γaIAgeit=a +
A

∑
a=1

βaIAgeit=a × log(Popi) + Indi + µt + X ′itδ + εit,

where ∆yit is log change in employment of the establishment from year t− 1 to t, and IAgeit=a is a
full set of age dummies, up to a maximum age A which I set at 15 years.7 The vector of coefficients
{γa}A

i=1 documents how establishment growth varies with age, conditional on survival.

To measure systematic growth differences across space, the second set of coefficients {βa}A
i=1 mea-

sures the interaction of age with the log of population at the local level (log(Popi)) in the year the
establishment hires its first employee. It thus describes whether establishment growth rates vary
systematically with area population size across the firm life cycle.8

Finally, Indi are industry fixed effects at the 4-digit NAICS level, exploiting the longitudinally
consistent industry codes for the LBD made available by Fort and Klimek (2018). These fixed
effects capture systematic mean growth rate differences across detailed industries. µt are aggregate
time fixed effects and Xit are controls for multi-establishment firm and state fixed effects.

7After 15 years, more than 80% of the establishments in the LBD have exited. Varying the maximum age A does not
change the conclusions of this section.

8Using population density (people per square mile) in the local area instead of population size does not affect the
conclusions of this section.
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Figure 3: Establishment Employment Growth Rates by Age and Location Size
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Note: This figure plots the estimated employment growth rates of establishments by age above the baseline of age 15
in three different categories of population size, using the coefficients obtained from estimating equation (2) in the LBD.
95% confidence intervals in grey. N = 104, 000, 000, where this count has been rounded to accord with U.S. Census
disclosure rules. For reference, the average growth rate of 15 year old establishments conditional on survival across
industries is -1.3%.

Figure 4: Exit Rates by Age and Location Size
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Note: This figure plots the (unconditional) probability of exiting by age for all establishments born between 1980 and
1995, split by being born in three different categories of CZ population size. These probabilities are increments of
Kaplan-Meier survival functions estimated for 10 deciles of commuting zone size (full output is reported in Appendix
A.8) The three categories reported here correspond to decile 2, 5 and 10. N = 70, 000, 000, where this count has been
rounded to accord with U.S. Census disclosure rules.
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The results are shown in Table 4 in Appendix A.5. The first column restricts βa to be equal for
all ages, and finds no significant differences in establishment growth rates across space. Figure 3
uses these estimates to plot the growth rates by age for establishments located in three size classes
of commuting zone. Growth in employment is rapid for young firms, before quickly leveling out
with age, recalling results presented in Haltiwanger et al. (2013). However, growth is not correlated
with the population of the area in which the establishment is located.

The second and third columns of Table 4 in Appendix A allow the interaction terms in βa to vary by
age. While this introduces some noise into the parameter estimates, the estimated growth rates are
not systematically higher in denser areas. Figure 23 in Appendix A uses these estimates to again
plot the growth rates by age for establishments located in three size classes of commuting zone. No
systematic difference over an establishment lifetime is detectable between large and small areas,
conditional on survival.

The analysis for firms is complicated by the fact that firms can own several establishments, and
exist at multiple points in space. Defining the current location of such multi-establishment firms
is not straightforward. Though relatively few in number, these firms account for large fractions of
employment and output, and cannot be ignored.

Nevertheless, we can ask a related question. Most multi-establishment firms begin life with a sin-
gle establishment, allowing a well-defined notion of the birthplace of the firm. I test whether firm
growth over the lifecycle (conditional on survival) is correlated with the population of the firm’s
birthplace. I follow standard practice by defining firm age as the age of the oldest establishment
the firm owns at birth, from which point the firm ages naturally. The results and further detail are
given in Appendix A.5. As with establishments, I find that firms born in more populous locations
do not grow systematically faster over their lifecycle.

Fact 3b: Differences in exit rates by age across large and small areas are negligible.

To show this, I examine the exit decisions of establishments non-parametrically as a function of
age. I take all establishments born between 1980 and 1995, and follow them until 2015. I estimate
Kaplan-Meier survival functions for these establishments, split by the local size of the area in which
the establishment is born. Exit rates by age are taken from the increments in the estimated survival
functions.

In Figure 4, I plot the exit rates for establishments, split by the same size classes of commuting
zone as Figure 3. These are almost identical over the sample period; exit rates are on average less
than 0.1% higher for each age for establishments in a commuting zone above the median size. In
Appendix A.8 I show the estimated survival functions, as well as further detailed breakouts by
size category. The conclusion continues to hold: entry rate differences across areas of different
population sizes are negligible. Over a 20 year time span, differences in exit probability are less
than 2% between the most populous areas and the least, out of an average exit rate of 81%.
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Figure 5: Establishment Employment By Age and Location Size
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Note: This figure plots average employment by age for establishments, split by deciles of the population of the commut-
ing zone in which they were born. Commuting zone decile is calculated using data for commuting zone populations
from the NBER intercensal county estimates and commuting zone definitions from the U.S. Census for the year 2000.
N = 125, 000, 000, where this count has been rounded to accord with U.S. Census disclosure rules.

Facts 3a and 3b combined suggest establishment scale within industries evolves in parallel across
areas of different sizes. A sense of this can be gained from Figure 5, where I plot the log of average
establishment employment by age across 10 deciles of commuting zone size.9 Without additional
controls, it indeed appears as if growth in establishment scale by age is unrelated to the population
of the local area (though establishments are systematically larger in more populous areas). I show
this more rigorously for employment, average wages and sales per worker in Appendix A.6, using
the same controls and specification as in equation (2).

2.1 From Data to a Theory of Local Growth

Considered together, these facts can help discriminate between the three families of growth theory
outlined above. First, in standard models of creative destruction, higher entry rates are accom-
panied by higher exit rates. Entry of new firms directly displaces incumbents, and is the central
source of growth. This prediction is rejected by the spatial data. As discussed above in Fact 2,
Figure 19 in the Appendix shows that the 10-year establishment exit rate is practically unrelated
to either the current entry rate or the current employment growth rate of the commuting zone.
Moreover, Figure 2 emphasizes that variation in employment growth at the local level is mainly
driven by variation in the entry margin, not the behavior of incumbent establishments.

Theories of idea diffusion at the local level have generally focused on workers, and argued that
dense cities facilitate learning through more frequent interactions with others (Glaeser, 1999; Davis

9Each of these deciles contains 10% of the U.S. population in the year 2000. A summary is provided in Table 5 in
Appendix A.7.

12



and Dingel, 2019). While there is some evidence of faster human capital accumulation in cities
(Roca and Puga, 2017; Eckert et al., 2019b), Fact 3 shows that ideas implemented by firms in big
cities are no more successful than those implemented elsewhere (as measured by either growth or
survival). Agglomeration spillovers on the firm lifecycle appear to be absent.

Instead, the data is consistent with a theory of growth driven by the extensive margin of firm
creation, a la Romer (1990) and Krugman (1991). An additional piece of background evidence
supports this view. I show in Appendix A.9 that there is a very tight correlation between the
number of firms at the commuting zone level and the industry complexity of the commuting zone;
places with many firms have a much larger range of detailed industries at the six-digit NAICS
level. This is the key channel of expanding-variety based growth theory, and supports the notion
that there is a greater ability to source specialized inputs in larger areas, which would lead to
productivity gains at the firm level.

3. A MODEL OF FIRM CREATION AND LOCAL GROWTH

I now describe a simple model of local growth, where firm creation generates persistent growth
differences across areas. In the model, firms are created in response to local profit opportunities.
A new entrant pays a fixed cost to bring a new product to an area, and in doing so raises local pro-
ductivity. High productivity increases labor demand and wages locally, and attracts new workers
to the area. In turn, higher spending drives demand for new local firms.

This logic generates a dynamic interaction between the decisions of entrants and the location de-
cisions of workers, causing persistent differences in growth across space. The strength of propa-
gation depends crucially on the availability of land supply. Places where it is easier to build new
housing for workers will see greater inflows of workers in response to an increase in wages, and
hence a stronger impact on local demand.

Though stylized, the model is rich enough to be estimated directly on the microdata, and I use it
to quantitatively assess the importance of firm creation and new varieties to local growth. In this
section I present the model, and in the following one I discuss the estimation strategy.

3.1 General Environment

Time is continuous. There are a discrete number of fixed locations j = {1, ..., J}. Regions are
characterized by an amenity level Aj,t and a productivity Bj,t.

Consumer Preferences. There are three classes of agents in this economy. First, there is a mass
Lt of workers. These workers have preferences over final goods and housing services, given by a
Cobb-Douglas period utility function

(3) UW
j,t = Cα

t H1−α
t Aj,t ,
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where Ct is consumption of a homogenous final good, Ht is housing services and Aj,t is a loca-
tion specific amenity. Workers are freely mobile in each instant, and so choose the location that
maximizes instantaneous utility. Workers cannot save. They supply their labor inelastically for a
competitive wage wj,t when in location j at time t.

Second, in each location there is a unit mass of identical capitalists. These capitalists cannot move.
They consume only the final consumption good, and have intertemporal preferences given by

(4) UE
t = Et

∫ ∞

t
e−ρs (C

E
s )

1−γ

1− γ
ds,

for γ ≥ 0. These capitalists own all the firms in their location, and receive dividends from their
operations. They also finance the creation of new firms in their location in order to maximize their
intertemporal utility. They may not invest in other locations.10

Third, there is a mass of landlords living in each location. They own an amount of housing real
estate, hj, and an amount of commercial real estate K. They too cannot work or move, and consume
only the income from their property holdings through purchases of the final good.

Production. In each location, there are firms producing intermediate inputs used in producing the
final good. I assume each firm produces a single intermediate variety, and a firm only exists in
one location fixed at the time of birth. After entering, firms cannot move. Final good output is
produced by competitive firms in each location, which aggregate all intermediate inputs in that
location according to

(5) Yj,t =

(∫ Nj,t

0
y

σ−1
σ

j,t (i)di
) σ

σ−1

,

where yj,t(i) is the use of variety i in location j at time t, and Nj,t is the number of intermediates
firms in the local economy. This final good is freely traded across locations, and so commands the
same price everywhere. It serves as the numeraire.

Each intermediate firm i is characterized by an idiosyncratic efficiency term z̃. Its productivity
depends both on a local productivity shifter Bj,t and its efficiency z̃. It produces according to
qj,t(i) = Bj,t z̃t(i)l(i),where l(i) is employment of labor. Standard aggregation results for monopo-
listic competition imply that the wage in location j depends on three local state variables, according
to

(6) wj,t =
σ− 1

σ
Bj,t
(
Z̄j,tNj,t

) 1
σ−1 ,

where Z̄j,t measures the average efficiency of the firms in location j at time t. For ease of notation
and without loss, I work with a scaled version of firm efficiency, defined as z ≡ z̃σ−1. Then Z̄j,t is

10In Appendix C I consider an alternative formulation with a representative capitalist who owns all firms in all
locations. The long run implications are identical, but short run dynamics feature some differences.
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defined as Z̄j,t ≡
∫ ∞

0 zdMj,t(z) , where Mj,t(z) is the probability measure of firms with efficiency z
at time t in location j.

Note from equation (6) that there are increasing returns to scale in the number of local firms Nj,t,
due to the specialization effect common to many economic geography models (see e.g. Krugman
(1991)).

Firm Dynamics. Starting a firm requires paying a fixed set up cost in the form of purchasing a
building. Upon paying the cost, the new firm will draw its efficiency from a distribution G(z) that
is independent of location, and commence operation. The building cannot be sold once the firm
begins operation, and as such there is no endogenous exit choice to consider.

Firms grow over time through shocks to their idiosyncratic efficiency. If a firm receives a shock,
they see their efficiency change proportionally from z to ∆iz, where ∆i ∈ {∆u, ∆d}. Their efficiency
either improves when receiving ∆u > 1, in which case they expand production, or falls with ∆d <

1. Shocks arrive at a constant Poisson rate φi ∈ {φu, φd}. Lastly, firms die at constant rate δ,
independent of size or location. The mass of local intermediates firms evolves according to

Ṅj,t = NE
j,t − δNj,t

where NE
j,t is the flow of new entrants.

Land Development. In this model, a location consists of two non-overlapping zones: a commercial
district and a residential district. Production by firms takes place in the commercial district, and
workers live in the residential district.

A building in the commercial district is required in order to operate an intermediates firm. New
buildings can be produced by a competitive construction sector by combining the final good with
commercial land, according to NE

j,t = (XE
j,t)

1−ζ̃Kζ̃ where NE
j,t is the flow of new buildings for en-

trants (and hence equal to the mass of new entrants in equilibrium), XE
j,t is use of the final good in

commercial construction, and K is a fixed amount of commercial land, common across areas. This
introduces a congestion friction into the construction of new buildings in the commercial district;
when demand for new buildings is high because the city is undergoing a boom, the cost of enter-
ing will be higher. It also introduces a dynamic element to entry decisions, since the mass of firms
cannot immediately adjust to local shocks, and investment takes time to play out.

Workers rent housing in the residential district.11 Housing services are produced competitively
using the final good and the fixed land supply hj owned by the residential landlords, according
to Hj,t = cvj(XH

j,t)
1−vj h

vj
j , where cvj is a combination of model constants, and XH

j,t is use of the
final good in residential services. As with commercial land, the cost of renting land in region j
will depend on how difficult it is to expand development of this land when demand rises. This
depends on the parameter vj, since residential land hj is in fixed supply. A higher value for vj will
result in a less elastic supply of housing services in location j.

11I model residential land as a produced service so as to abstract from durability in the residential sector. This can be
accommodated at some cost in complexity.
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3.2 Equilibrium Characterization

I begin by characterizing the behavior of an intermediate-producing firm. I assume that capitalists
have perfect foresight over the paths for location fundamentals, so that the evolution of economy
wide state variables can be captured through the dependence of the value of the firm on time and
location only. The value of the firm with efficiency z, at time t and in location j, denoted Vj,t(z), is
given by the HJB

(rj,t + δ)Vj,t(z) = πj,t(z) + V̇j,t(z) + ∑
i∈{u,d}

φi(Vj,t(∆iz)−Vj,t(z)),(7)

where rj,t is the interest rate on the local capitalists portfolio. I provide a full treatment of the
determination of this interest rate in equilibrium in Appendix C. The discounted value of any
firm involves three separate parts. First is the flow profits from operation πj,t(z). Second is the
appreciation in value that results from evolving state variables in the economy, including changing
wages and populations across all regions. These state variables enter only through their impact on
current local profits. Last is the appreciation in value that arises from stochastic improvements of
firm productivity.

Under the CES production structure for the final good, profits are a constant fraction of revenues.
We can exploit the fact that sales of the final good within each location have to equal the income
flowing to labor and intermediate firm profits, since the final good sector is competitive. This
allows us to write the profits of the firm with mean efficiency Z̄j,t as

(8) πj,t(Z̄j,t) =
wj,tLj,t

(σ− 1)Nj,t
.

This is a classic result in the standard model of monopolistic competition. Independent of demand,
firms charge a constant markup over marginal cost, which itself is constant due to the linear pro-
duction function. As a result, when spending rises firms will respond by increasing output, making
a constant profit on each extra unit sold. Profits are then increasing in total spending, and decreas-
ing as the number of firms in a location rises due to competition. Moreover, the profit of any firm
is linear in efficiency z, and can be written πj,t(z) = πj,t(Z̄j,t)Z̄−1

j,t z.

Now given that the probability of death is also independent of z, the value of the firm takes a
particularly tractable form. Assuming that the value of the firm is bounded (which is proved in
Appendix B.1 under simple conditions on primitives), we have the following result:

Lemma 1. The value of the firm is linear in z at all times, and in all locations.

This result aids substantially in characterizing the equilibrium. As we will see below, it implies
that it is unnecessary to keep track of the distribution of firm-level productivity over time when
computing equilibrium dynamics. Instead, the value at the mean entrant efficiency in a location is
a sufficient statistic to characterize the entry and investment decisions of firms.
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These decisions will depend on the profitability of the average firm in any given location. To
see how this is determined, note that from (8), profits depend on a balance between two local
scale variables. The first is the total wage bill for production, wj,tLj,t, which is a measure of local
economic activity and spending. The second is the number of firms Nj,t in that location. Places that
see growth in local spending, perhaps due to a growing population, will incentivize the creation of
new firms. These new firms can profitably use the local labor force, due to the decreasing returns
to scale each firm faces on the demand side. Entry of these new firms will lower spending per firm,
decreasing the attractiveness of entry in the future and stabilizing the local economy.

More precisely, in equilibrium, free entry will require that the cost of creating a new firm equals
the expected value of creating a firm, or

(9) τ(NE
j,t)

ζ =
∫ ∞

0
Vj,t(z)dG(z),

where ζ ≡ ζ̃

1−ζ̃
and τ is a combination of model constants, and I have derived the cost of creating a

new firm on the LHS of equation (9) from market clearing for commercial land in location j at time
t. Thus for free entry to hold, areas with high profitability and high firm values will induce higher
rates of entry, and drive up the costs of building construction.12

In the simple linear setting adopted here, we can solve analytically for the entry decisions of firms
in every location. In combination with Lemma 1, free entry will pin down the value of the firm
at the mean entrant efficiency, such that τ(NE

j,t)
ζ = Vj,t(z̄E) and z̄E ≡

∫ ∞
0 zdG(z) is the mean

efficiency of entrants. In addition, free entry will ensure that appreciation in this value depends
only on changes in the mass of entrants through time. Thus, while new firms have to solve a
potentially complex forecasting problem involving the entire future evolution of activity across
space, in general equilibrium they know that changes in the value of their firm will reflect only the
number of entrants.

Inserting the expression for profits in (8) into the HJB gives us another expression for this value in

(rj,t + δ)Vj,t(z̄E) =
z̄E

(σ− 1)
wj,tLj,t

Nj,tZ̄j,t
+ V̇j,t(z̄E) + ∑

i∈{u,d}
φi(Vj,t(∆i z̄E)−Vj,t(z̄E)),

Combining the two expressions for the mean value, along with another application of Lemma 1,
gives us

rj,t −Φ =
z̄E

(σ− 1)τ
wj,tLj,t

Nj,tZ̄j,t(NE
j,t)

ζ
+ ζ

ṄE
j,t

NE
j,t

,

where Φ = ∑i∈{u,d} φi(∆i − 1)− δ and gne

j,t = ṄE
j,t/NE

j,t is the growth in the flow of entrants. Rear-
ranging, this discussion results in the following proposition:

12Note that in this model the free entry condition is never slack, and entry is always positive. Since firms pay no
fixed operating costs, expected profits over the firm’s life must always be positive. However, as entry goes to zero, the
cost of creating firms also goes to zero, so in equilibrium there will always be some firm creation. Net firm creation
(after accounting for exit), on the other hand, may be negative.
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Proposition 1. Equilibrium entry in each location depends only on local state variables, and solves the
differential equation

(10) (NE
j,t)

ζ =
wj,tLj,t

(σ− 1)τNj,tZ̄j,t/z̄E
1

rj,t − ζṄE
j,t/NE

j,t −Φ
,

Proposition 1 is the key result that allows me to solve the model. The result says that the equi-
librium amount of entry depends positively on the local market size, captured in the amount of
available labor Lj,t, and is falling in the number of existing firms. Moreover, population inflows
will raise the entry rate, and cause the number of incumbent firms to rise, eating away at the prof-
itability of new incumbent firms. The second term in (10) reflects the appreciation in value due to
rising entry costs. This appreciation itself depends directly on the change in the amount of entry,
and as such the entry rate solves a differential equation in time in every location which depends
only on current state variables in that location. This substantially simplifies equilibrium dynamics.

The second part of the theory’s feedback loop comes from the location choices of workers. Since
workers are freely mobile at any instant, their welfare must equalize across all locations. Thus,
given worker preferences from (3), wages and rental rates must satisfy

(11)
wj,t

p1−α
j,t

Aj =
wk,t

p1−α
k,t

Ak

for all pairs of (j, k) ∈ {1, ..., J}, where pj,t is the price of a unit of housing services in location j.
Given that land is in fixed supply, we can use market clearing for residential land to draw out the
relationship between population and wage level. First, the price of a unit of housing services in
location j will be given by

(12) pj,t = ((1− α)vj
wj,tLj,t

hj,t
)vj .

The presence of a fixed supply of residential land for development implies that housing services
become more costly the more people move to a location, and the more people earn in this location.
Combining (12) and (11) yields an expression that relative populations must satisfy, given by

(13)
L

v̄j
j,t

Lv̄k
k,t

=
w

1−v̄j
j,t Aj,th̄

v̄j
j

w1−v̄k
k,t Ak,th̄

v̄k
k

,

where v̄j ≡ (1 − α)vj and h̄j ≡ hj/v̄j. As in standard models of economic geography, relative
populations are increasing in relative wages, amenities and residential land supply, recalling the
static structure of Allen and Arkolakis (2014).13 Dynamically, an increase in wages from entry of

13It is worth noting that the (potential) presence of heterogenous land supply elasticities in the model have an impor-
tant implication: relative rankings of places for workers are not invariant to the choice of units for Aj,t and hj. However,
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new firms will draw in new workers. The greater spending on local firms will partially offset
declining profits, allowing further entry in the future.

The final piece to characterize an equilibrium concerns movements in Z̄j,t, or average-firm level
efficiency. This efficiency evolves over time in response to firm level growth and movements in
the entry rate nE

jt ≡ NE
j,t/Nj,t, according to

(14) ˙̄Zj,t/Z̄j,t = ∑
i∈{u,d}

φi(∆i − 1) + nE
j,t(z̄

E/Z̄j,t − 1).

The first term in this expression reflects the growth in average firm level efficiency due to the
stochastic firm-level shocks. The second is the contribution to average productivity due to entry.
Entrants begin with an average productivity z̄E, and as such the speed at which they enter will
also influence the evolution of average productivity.

This expression highlights the importance of including a description of post-entry dynamics in
the model. From equation (6), wages are determined both by the number of firms and by their
average efficiency. In the data, most entrants start small, and grow over time. If size is a proxy for
productivity, then a surge of entry will actually lower the average efficiency in an area, creating a
partial drag on wages that only reverses as these new firms grow.

We now define an equilibrium under perfect foresight over location fundamentals.

Definition 1. Given paths for fundamentals {{Aj,t, hj,t, Bj,t}J
j=1, Lt}, a perfect-foresight equilibrium is a

path for worker populations {Lj,t}J
j=1, wages {wj,t}J

j=1, interest rates {rj,t}J
j=1, the mass of firms in each

location {Nj,t}J
j=1 and average efficiency {Z̄j,t}J

t=1 such that

1. Firm values are given by (7) and capitalist investment decisions maximize their intertemporal utility.

2. Worker welfare is equalized across space, such that (13) holds.

3. Wages across regions satisfy (6).

4. Free entry holds in (10).

5. Average efficiency Z̄j,t evolves according to (14).

6. The labor market clears, such that
J

∑
j=1

Lj,t = Lt.

Stationary Equilibrium. To study the equilibrium growth dynamics in this model, we begin by
analyzing a stationary equilibrium where location fundamentals are held constant. The number
of firms is constant in all locations, as are wages and populations. As such, the entry rate will be

given the paper is largely concerned with responses to relative changes in fundamentals (which are unaffected by base
units), this concern is immaterial for my purpose.
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everywhere constant at δ (the exogenous exit rate of firms). Using the entry equation (10), this
implies

(15)
wj,tLj,t

N1+ζ
j,t

=
wk,tLk,t

N1+ζ
k,t

.

Then long-run populations in the stationary equilibrium can be solved from (13) and the total
amount of labor in the economy. To characterize this stationary equilibrium in terms of objects
which appear in the data, suppose that realizations of location fundamentals Aj, Bj and hj are
drawn from some stochastic distribution at time 0. Then we can show the following.

Proposition 2. There is a unique stationary equilibrium in this economy if and only if min
j
{ v̄j

1−v̄j
} >

1
(1+ζ)(σ−1)−1 . This equilibrium is locally stable. In this equilibrium:

a) Wages increase with population according to

(16)
d

dlog(Lj)
E[log(wj)|log(Lj)] =

1
(1 + ζ)(σ− 1)− 1

+ σ̃
d

dlog(Lj)
E[log(Bj)|log(Lj)],

where σ̃ ≡ (1+ζ)(σ−1)
(1+ζ)(σ−1)−1 .

b) Average firm size changes with population according to

(17)
d

dlog(Lj)
E[log(Lj/Nj)|log(Lj)] =

1
1 + ζ

(
ζ − d

dlog(Lj)
E[log(wj)|log(Lj)]

)
.

where these conditional expectations are taken before time 0. As is standard in many spatial mod-
els, existence and uniqueness of a stationary equilibrium in this model depends on the balance of
dispersion forces (represented through house price elasticities v̄j, and entry cost elasticity ζ) and
attraction forces (embedded in the increasing returns to scale due to firm creation, embedded in
σ). Local stability is demonstrated via linearizing the dynamics of the model around this steady
state, and showing convergence.

The increasing returns from variety embedded in the wage equation in (6) leads to an equilibrium
urban wage premium, with larger places paying higher wages. This can be seen in the first term in
equation (16), where the scale elasticity (σ− 1)−1 shows up. This term is moderated by ζ, which
determines the elasticity of the entry cost to the scale of entry, since in a stationary equilibrium
places with more firms will see higher entry to replace those that exogenously die.

Without further structure on the location fundamentals, less can be said about the second term in
(16), which captures how local TFP varies with population size in the stationary equilibrium. It
will in general depend on the correlation between Bj, housing supplies hj and local amenities Aj

(and could in principle even be negative). To gain some intuition, we can derive a closed form for
this expression under a set of simple assumptions, given in the following Lemma.
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Lemma 2. Suppose that log(Aj) and log(Bj) are i.i.d across space and drawn from a joint multivariate
normal N (µ, Σ) at time 0. Moreover suppose that the housing supply elasticities vj and shifters hj are
constant across space. Then

d
dlog(Lj)

E[log(Bj)|log(Lj)] =
( 1

v̄−1 )ΣBA + σ̃2Σ2
B

( 1
v̄−1 )

2Σ2
A + σ̃

v̄−1 ΣBA + σ̃2Σ2
B

.

From this we can see that if highly productive places are also desirable places to live (such that
ΣBA > 0), then we will tend to observe higher wages in populous areas in the long-run. If the
variance of amenities across space is large relative to local TFP (such that Σ2

A is large relative to
Σ2

B), then the relationship between wages and population will be weaker, and determined mostly
by endogenous firm creation. Though stylized, this expression shows the difficulty in inferring the
strength of endogenous productivity forces from cross-sectional data.

Note also that in this model, average firm size will tend to be rising in population size due to the
congestion in firm creation from scarce land if this congestion is sufficiently large. This is consistent
with the facts presented in Figure 5. At birth establishments are larger in more populous areas, but
grow no faster. I use the expression in point b) of Proposition 2 directly in the estimation, exploiting
the fact that average firm sizes across space give us information about the costs involved in setting
up a new firm across space.

Non-Stationary Dynamics. Even in this simple setting, much of the dynamics must be analyzed
numerically; the non-linear ODE in (10) cannot be solved in closed form. However, considering the
linearized dynamics around the stationary equilibrium helps gain intuition for the central growth
channel of the model. In particular, it reveals the crucial role of labor mobility in propagating the
firm creation process through local demand. In this process, the land price elasticity will play a key
role. Places where it is easy to build new housing will see greater amplification and propagation
of changes to location fundamentals.

Consider the simplest case, with no post entry dynamics of firms (so Φ = −δ), and linear utility for
the capitalists (such that γ = 0). I show in the Appendix that beginning from all Nj,0 sufficiently
close to their stationary values of N̄j, the mass of firms in each location will satisfy

Nj,t = (Nj,0 − N̄j)exjt + N̄j,

where

(18) xj = 0.5(ρ−
√

ρ2 + 4δ
(ρ + δ)

ζ
(1 + ζ − 1

v̄j(σ− 1)
),

and it can be readily verified that xj < 0 given 1+ ζ− 1
v̄j(σ−1) > 0. To illustrate the main mechanism

of feedback from labor mobility, let us consider how the mass of firms evolves in two identical
locations j and k, save that one has a lower land price elasticity, such that v̄k < v̄j. In such a case,
it can be verified that N̄k > N̄j, so that the long run mass of firms will be higher in the less price
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Figure 6: Local Dynamics of Firm Creation
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Note: This figure plots representative paths for equation (18) for a low land price elasticity, a high land price elasticity
and a fixed population, beginning from the same initial number of firms in each location.

elastic location. Beginning from the same point Nj,0 = Nk,0 < N̄j, their respective time derivatives
satisfy

Ṅk,t

Ṅj,t
=

xk(Nj,0 − N̄k)

xj(Nj,0 − N̄j)
e(xk−xj)t,

and since xk − xj > 0, this ratio increases without bound. Moreover, if Nj,0 is sufficiently close to
N̄j, this ratio is above one at time 0. As such, while both locations will see positive growth in the
number of firms that converges to zero, the rate of increase is always faster in the less price elastic
zone. What is happening is that labor is moving into location k at a faster rate than location j at all
times, since house prices rise less for a given population inflow. This spurs local demand more in
location k than j, and leads to further growth in both population and the mass of firms. I illustrate
these dynamics in Figure 6. The limit case of no population dynamics can be considered by taking
v̄j → 1 in (18).

4. MODEL ESTIMATION

The model illustrates a mechanism whereby continued firm creation can generate persistent growth
in employment and wages at the local level through variety gains. I now turn to quantifying this
mechanism. The aim is simple. Returning to Figure 1, how much are startups generating growth
themselves, and how much does their presence merely reflect other sources of local growth?

In answering these questions, I face a fundamental identification challenge. Firms are forward
looking, and expected changes to future fundamentals will affect firm creation today.

The strategy I employ isolates a series of demand shifters for local firm creation which are assumed
to be uncorrelated with changes in local TFP. In particular, I leverage variation from the aggregate
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decline in manufacturing, which induces changes in spending at the local level. These changes
depend on the specialization of a local area in manufacturing in 1975. I then use a baseline version
of the model to generate a counterfactual equilibrium, where the only local changes are driven by
optimal responses to an economy-wide manufacturing decline. This idea builds on a more general
model instrumental variables approach developed in Allen et al. (2019) and Adao et al. (2019), who
use the general equilibrium structure of trade models to generate instruments for the estimation
of key parameters such as trade and labor supply elasticities.

Doing so generates spending shifters at the local level, and hence predictions for firm entry and
employment over time. I use these predictions as instruments for the changes actually observed,
recovering estimates of local scale elasticities, land supply elasticities and substitution patterns
between manufacturing and service employment.

In the following section, I describe the setting and variation used for identification. In section 4.2 I
modify the theory to accommodate multiple sectors. Section 4.3 describes the estimation.

4.1 Structural Change and Firm Creation

In recent decades, the U.S. has experienced a significant decline in manufacturing employment.
30.3% of the U.S. workforce were employed in manufacturing in 1975. By 2015, this number had
fallen to 12%. Even during a period of significant national employment growth, manufacturing
employment in levels actually fell, from 18 million in 1975 to 12 million in 2015. Figure 29 in
Appendix A.10 displays these patterns.

The causes of this decline explored in the literature embody a combination of trade-based dis-
placement and automation. Trade explanations have emphasized heightened competition from
manufacturing in the developing world since at least the 1990s, as well as a role for offshoring
by U.S. companies themselves. Several influential studies attribute large losses in manufacturing
employment to the entry of China in particular into the world trading system (Autor et al., 2013;
Pierce and Schott, 2016). The evidence for the role of automation is so far less clear, but may have
been significant in substituting labor for capital in some industries (Acemoglu and Restrepo, 2019;
Hubmer, 2018). For a comprehensive review of these issues, see Fort et al. (2018).

The effects of this aggregate structural change had an important local dimension. In Panel (a)
of Figure 7 I plot local employment growth since 1975 across U.S. commuting zones. The fastest
growing areas during this time have been Florida, Texas and and the sparsely populated Mountain
West (light colors). The old industrial heartlands in the North-east and Midwest have grown the
slowest (dark colors). In Panel (b) I overlay each commuting zone’s manufacturing employment
share in 1975; clearly, manufacturing-heavy commuting zones experienced slow growth over the
past 40 years. To borrow a term from Eckert and Peters (2018), this spatial structural change has
left significant traces on American economic geography.14

14Eckert and Peters (2018) study the spatial implications of structural change during the era of the transition from
agriculture to manufacturing. They find that during this period, reallocation of employment across areas accounts for
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Figure 7: Regional Growth and Manufacturing Specialization

(a) Employment Growth 1975-2015 (b) Manufacturing Specialization in 1975

Note: This figure compares total employment growth at the commuting zone level from 1975 to 2015 (Panel (a)) with
the fraction of employment in manufacturing within that commuting zone in 1975 (Panel (b)). Employment growth is
top-coded at 300%, and manufacturing employment shares in 1975 are top-coded at 40%. Each polygon corresponds to
a commuting zone. The source data is the public-use Quarterly Census of Employment and Wages (QCEW) produced
by the Bureau of Labor Statistics, with aggregation of county data to the commuting zone level done by the author. Data
for manufacturing specialization in South Dakota and North Dakota uses the 1980 QCEW as a proxy for 1975 due to
total censoring in the 1975 files.

Figure 8: Employment Growth across Commuting Zones by Manufacturing Specialization
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Note: This figure plots the average of annual employment relative to 1975 across four groups of U.S. commuting zones,
where commuting zones are taken from the U.S. Census groupings of counties in 2000. The four groups are based on
each commuting zones’ manufacturing employment share in 1975. They also roughly correspond to quartiles of the
manufacturing employment share distribution in 1975. Data comes from the Quarterly Census of Employment and
Wages produced by the Bureau of Labor Statistics, and manufacturing employment uses the SIC code implementation
for 1975.

24



Table 1: Firm Creation and Manufacturing Shares

Dependent variable: Log Change in Number of Establishments, 1990-2015

Services

All Manufacturing All High-Skill Local Ed & Med Construction Trade

Manufacturing Share −0.378∗∗∗ −0.389∗∗∗ −0.330∗∗∗ −0.175 −0.319∗∗∗ −0.718∗∗∗ −0.668∗∗∗ 0.198
of Employment, 1975 (0.084) (0.079) (0.090) (0.115) (0.084) (0.209) (0.107) (0.122)

Constant 1.359∗∗∗ 0.380 1.470∗∗∗ 1.906∗∗∗ 0.811∗∗ 0.656 0.622 1.058∗∗

(0.350) (0.334) (0.374) (0.481) (0.350) (0.817) (0.449) (0.511)

Geographic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Size Controls Yes Yes Yes Yes Yes Yes Yes Yes
Demographic Controls Yes Yes Yes Yes Yes Yes Yes Yes
Observations 510 496 510 504 510 377 488 501
Adjusted R2 0.103 0.231 0.106 0.076 0.156 0.093 0.217 0.104

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: This table shows regressions of the total log change in the number of firms by industry from 1990-2015 on the
share of the local workforce employed in manufacturing in 1975. Geographic controls include the latitude of the centroid
of the commuting zone and mean January temperature. Size controls are the commuting zone population in 1975 and
the land area of the commuting zone in square kilometers. Demographic controls are the share of the population with
less than a high-school degree, the average income of the commuting zone in 1975, the fraction of the population who
was black in 1975, and the average age of the population in 1975. Manufacturing share in 1975 uses the SIC industry
classification, and the number of establishments in the dependent variable uses the NAICS classification, due to the time
period studied and the change from SIC to NAICs in this period. The changing number of observations by industry
reflects censoring of the QCEW for some regions with low population.

The time series dimension of this pattern is shown in Figure 8. From 1990, manufacturing-heavy
areas began to diverge from the rest of the nation, with those areas doing little to no manufacturing
employment in 1975 experiencing a surge in employment growth. This growth reflected large rel-
ative population shifts towards service-intensive areas, with little being due to differential growth
in employment-population ratios.15

Employees spend at least a portion of their income locally. As such, these changes should imply
slower growth in market size for new businesses in regions previously specialized in manufactur-
ing. Lower growth should then cause lower rates of business formation, particularly in sectors that
cater to local demand. Table 1 tests this prediction.

Using publicly available data from the QCEW, I regress changes in the number of establishments
at the commuting zone level in the twenty-five years following 1990 on the share of employment
in manufacturing in 1975. I report the results for four major sectors: Manufacturing, Services,
Construction and Trade (which I classify as wholesale and transportation establishments). A con-
sistent pattern emerges, with manufacturing-heavy areas seeing dampened business creation rates
in subsequent decades across sectors.

I further separate Service industries into three categories: High-Skill (including finance, technol-

essentially none of the aggregate decline in the agricultural share in employment. The spatial implications of manufac-
turing’s decline have received less attention, with the exception of Charles et al. (2019).

15See Appendix A.11 for details.
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ogy, consulting and management), Local (restaurants, retail and non-tradable services such as au-
tomotive repair), and Education and Medicine. The first category might be thought of as tradable
services (Eckert, 2019), and be less likely to respond to local demand shortfalls than Local Services
and Education and Medicine, which is indeed what I find.

These results hold after including a rich set of controls for characteristics of each commuting zone
in 1975, including size, geographic, and demographic characteristics.16 As such, they support the
idea that structural change and the shift of employment out of manufacturing had a direct effect
on startup rates, depressing them in areas which were hit hardest by manufacturing’s decline.

It is also interesting to note that while the number of manufacturing establishments contracted
in most commuting zones during this period, they actually rose on average in commuting zones
with less than 20% manufacturing employment in 1975. One interpretation is that the even in a
period of national contraction, the large population and employment shifts presented in Figures 7
and 8 generated sufficiently increased demand for manufacturing products in these areas that they
incentivized the creation of new firms to meet this demand.

4.2 Taking the Model to the Data

To take the model to the data, I now introduce two sectors: Manufacturing and Services. I sup-
pose that final output in each location is composed of two final sectoral goods, given by a CES
aggregator

(19) Yj,t =
[
(YM

j,t )
ε−1

ε + (YS
j,t)

ε−1
ε

] ε
ε−1

where YM
j,t and YS

j,t are the final output of the manufacturing good and the service good. Both these
final outputs are produced competitively by aggregating intermediate inputs within a location
according to (5), but with sectoral specific elasticities σM and σS. I modify the production function
to accommodate sectoral differences, and assume that production of each intermediate variety is
done according to

qM
j,t(i) = Bj,t Mj,t z̃t(i)l(i) qS

j,t(k) = Bj,t z̃t(k)l(k)

for firms in the service and manufacturing sectors respectively. Bj,t continues to define a sector-
neutral location-specific TFP, while Mj,t is a manufacturing-specific productivity shifter. This man-
ufacturing shifter is the key cause of structural change in the two-sector model. It consists of two
components: a location specific mj,t, and an aggregate Πt common to all locations, such that

Mj,t = mj,tΠt.

The comparative advantage of a location in manufacturing is captured by mj,t, and could reflect a
number of features that make manufacturing firms particularly productive in a location, including

16See the note in Table 1 for details.
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favorable transportation infrastructure, cheap power supply and historical local knowledge stocks.
Without loss, I take these to be mean zero in logs across locations.

Πt is an aggregate shifter which affects the output of all manufacturing firms within the economy.
The effect it has on a particular location depends on local specialization in manufacturing. Such
specialization can come from two sources; comparative advantage in productivity through mj,t,
and the number of firms NM

j,t producing manufacturing goods. To see this, note that at any time
the share of the local labor force in services will be determined by

LS
j,t

Lj,t
=

(
Z̄S

j,t(NS
j,t)

1
σS−1
)ε−1

(
Z̄S

j,t(NS
j,t)

1
σS−1
)ε−1

+
(

mj,tΠtZ̄M
j,t (NM

j,t )
1

σM−1
)ε−1 .

It is apparent that all else equal, falls in Πt will raise service employment locally, as workers re-
allocate away from manufacturing locally. For a given change in Πt, this effect will be more pro-
nounced the higher manufacturing comparative advantage mj,t, and the greater the number of
manufacturing firms relative to service firms currently operating.

However, two other forces come in to play when aggregate manufacturing activity suffers. First,
wages fall immediately, and fall more in places specialized in manufacturing. This causes some
workers to leave the area until spatial equilibrium is restored. Second, as workers leave, invest-
ment in manufacturing-heavy areas becomes less attractive due to a lower overall level of spending
in this area. This reduces the number of firms over time, and due to the economies of scale embed-
ded in the production function in (19), wages full even further, causing more workers to leave. All
together, this can serve to lower total service employment in the long run.

4.3 Estimation Implementation

Estimation of the two sector model proceeds in two stages. First, I recover key firm-level param-
eters from direct estimation of the firm growth process on the LBD. Second, I use the structure of
the model to generate moment conditions, based on counterfactual equilibrium changes in em-
ployment and firm creation, to estimate the fundamental local production parameters.

Firm-level Parameters. I first estimate the parameters describing the firm life cycle directly from
the LBD. In a stationary equilibrium, growth in firm-level productivity can be directly inferred
from growth in employment, conditional on survival. I estimate the firm level growth parameters
φi and ∆i for i ∈ {u, d} using the first four moments of the employment growth distribution in the
entire LBD. The notion of a firm in the model corresponds most closely to an establishment with a
fixed address in the data, and as such I use the LBD to construct the distribution of establishment
growth rates from 1980-2015, aggregating across all industries.

To estimate the parameters of the model, I simulate a panel of firms, and sample the data at a yearly
time frequency to calculate the distribution of annual firm growth rates conditional on survival.
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The four growth parameters are chosen to match the first four moments of the empirical distribu-
tion of firm growth rates, and are reported in Table 6 in Appendix A.13. I estimate the death rate
of establishments δ from the average annual exit rate from 1980 to 2015.

Structural Production Parameters. Next I estimate the local scale elasticities in the number of
firms, σM and σS, and the elasticity of substitution between manufacturing and service production
at the local level, ε. Market clearing will imply relative sectoral employments given by

(20)
LS

j,t

LM
j,t

=

 (NS
j,t)

1
σS−1 Z̄S

j,t

mj,tΠt(NM
j,t )

1
σM−1 Z̄M

j,t

ε−1

Local specialization depends on an external comparative advantage (captured through mj,t), and
the relative numbers of firms in both locations, which are equilibrium outcomes. We can use this
ratio to derive an expression that the real wage must satisfy in a location, given by

(21) wj,t = (NS
j,t)

1
σS−1

(
1 +

LM
j,t

LS
j,t

) 1
ε−1

Z̄S
j,tBj,t

An analogous equation holds for the local wage in terms of the number of manufacturing firms
and local manufacturing comparative advantage (recall that services productivity is normalized to
1 in every location).

The fundamental estimation problem is immediately clear from this equation. Wages will tend to
be high where local TFP Bj,t is high, and if there are scale economies, where the number of local
firms Nj,t is high. However, local TFP is unobserved, and the number of firms in a location will
respond to TFP. Examining (21), higher productivity will draw more workers to an area, raising
local profits and incentivizing entry. This is a problem that is not specific to this paper, and arises
in a wide variety of contexts that attempt to estimate notions of agglomeration (see Ahlfeldt and
Pietrostefani (2019) for a review).

Note also that estimating equation (21) in changes is not sufficient to address this issue. Write the
estimating equation in log differences as

(22) ŵj,t =
1

σS − 1
N̂S

j,t +
1

ε− 1
( ̂1 + LM

j,t /LS
j,t) +

ˆ̄ZS
j,t + B̂j,t

where x̂j,t ≡ log( xj,t
xj,t−1

) for any variable x and two points in time.17 Changes in local TFP Bj,t will

also be correlated with changes in the local numbers of firms in both sectors, NS
j,t and NM

j,t . Estimat-
ing this equation by OLS will give us inconsistent estimates. What is needed are instruments for
the local number of firms in each sector and changes in sectoral employment which are themselves
uncorrelated with disturbances to local productivity.

17For the estimation I take these to be five-year changes in order to minimize the contributions of measurement error
and Census sampling frame adjustments among small commuting zones.
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The structure of the model suggests a natural way to do this. 18 A decline in aggregate manufac-
turing productivity Πt will imply different investments in the local number of firms, depending on
initial manufacturing specialization. Using a guess for the fundamental parameters of the model,
I calibrate the model to a steady state in 1975. In doing so I back out fundamental comparative
advantages mj,t to exactly match each commuting zone’s share of employment in manufacturing
in 1975, given observed numbers of firms in each sector. I then solve for a perfect-foresight path
of Πt which exactly matches the series for total U.S. manufacturing employment in the data. The
model generates a time-series for (ÑS

j,t, ÑM
j,t ) as well as labor allocations (L̃S

j,t, L̃M
j,t ) in the absence of

changes to manufacturing comparative advantage mj,t and local TFP Bj,t.

I use these counterfactual investment and employment patterns as instruments for the true changes,
leaving us with the moment conditions

E[B̂j,tQ̂j,t] = 0,

Instruments : Qj,t =

[
ÑS

j,t

ÑM
j,t

]
.

Since the instruments are model-generated, with no additional local data past 1975, they are in
one sense simply time-varying functions of the manufacturing shares of each commuting zone in
1975. Thus these moment conditions boil down to specifying that local changes in sector-neutral
TFP (i.e. changes not involving structural change in manufacturing) are uncorrelated with initial
manufacturing shares.

Before proceeding further, it is worth asking how well these instruments predict the actual ob-
served changes in economic activity. The results from the first-stage, given in Appendix A.12, are
quite strong, and in addition, the instruments do not systematically over- or under-predict their
data counterparts. This might be taken as a partial validation of the model, as no information on
entry patterns or firm investment is used to generate the counterfactual series for employment and
establishment changes.

A second set of moment conditions pins down the scale parameters for manufacturing σM. This
comes from the analog of (22) with manufacturing firms on the RHS, leaving us with the moment
condition

E[m̂j,tQ̂j,t] = 0

This condition also has a simple interpretation. It assumes that changes in relative comparative
advantage in manufacturing are uncorrelated with manufacturing shares in 1975. It is worth spec-
ifying what this means; it does not say that manufacturing-heavy areas experienced no greater
shifts in relative employment to services. Rather, it says that all of this effect is mediated through
initial exposure to the investment decisions of firms. Places that were better at manufacturing in

18I defer to the appendix discussion of changes in local firm efficiency, ẐS
j,t, which can be handled via a separate

procedure.
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1975 did not become systemically better or worse in the sector in later years.

Third is the strategy for ε, the local elasticity of substitution between manufacturing and services.
Recall that for a given ε, to generate the instruments (ÑS

j,t, ÑM
j,t ) I solve for the path for aggregate

manufacturing productivity Πt that exactly matches the U.S. manufacturing employment share.
Changing ε influences the regional consequences of structural change. In particular, a high value of
ε makes it easier for employment to move from manufacturing into services locally, without large
effects on the local wage. In contrast, when ε is low, a fall in Πt will depress wages in areas that
are more specialized in manufacturing, and cause more workers to leave the area and move to
service-intensive locations.

I thus choose ε to match the model-implied effects of structural change with what is observed in
the data. In particular, I choose ε such that, given all other estimated parameters and a path for
Πt that matches the aggregate manufacturing employment share, the average difference in rela-
tive employment growth between manufacturing-intensives areas in 1975 (red commuting zones
in Figure 8) and service-intensive areas (the blue commuting zones) by 2015 is exactly 36% (corre-
sponding to the gap between the endpoints of the lines).

Lastly, we need to estimate a value for ζ, the parameter which determines how costly it is for the
mass of entrants to adjust when local fundamentals change. Proposition 2 highlights that in the
stationary equilibrium, this parameter also directly governs how average firm size increases with
population size. As such, I use equation (17) directly, computing the average firm size elasticity
and average wage elasticity with respect to population for the years 1980-2010 in the Quarterly
Census of Employment and Wages, and use these to estimate ζ.

The estimated parameters appear in Table 7 in Appendix A.13. The estimated scale elasticity for
wages in the local number of manufacturing firms is significantly higher than that for services
(captured in the relative differences between σM vs σs). This perhaps accords with intuition: it
is commonly assumed by policymakers that new manufacturing activity generates greater local
multipliers than the equivalent investment in service firms.

Housing and Labor Supply Elasticities. The discussion in Section 3 highlights the key role that
land supply plays in propagating the feedback from firm creation and labor supply. Places with
more restrictive physical or regulatory constraints will receive smaller population inflows, and
reduced growth in wages as a result. To complete the estimation and obtain measures of these
elasticities at the local level, I follow a similar model-instrumentation strategy to above. From
equation (12), the rental rate of housing satisfies (in log changes)

(23) p̂j,t = vj(ŵj,tLj,t − ĥj)

such that log rental changes are linear in log changes in the total wage bill in the area.

I lack detailed data on rental rates at the commuting zone level. Instead, I impute them by assum-
ing that rental rates are proportional to house prices. I use house price indexes from the Federal
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Housing Finance Agency at the county level, from 1980 to 2017, and deflate these by the CPI in
each year. I then construct measures of long percentage changes in house prices (over the 5 year
horizon) to abstract from short-term volatility in these series. I aggregate these changes to the
commuting zone level by taking population-weighted averages of these changes over each county
within a given commuting zone.

The omitted variable problem in estimating (23) is clear. Unobserved changes in shifters of the
housing supply function ĥj (such as changes to local zoning laws ) will tend to induce movements
in Lj,t. Moreover, endogenous changes in zoning (which would be captured in ĥj) in response to
increases in local income are well-documented (Saiz, 2010). This would suggest that OLS estimates
of vj in equation (23) will be biased, though the direction is unclear. To obtain consistent estimates,

I again use the model to generate instruments for total payroll, denoted w̃j,tLj,t. Identification
requires now that changes in local housing supply shifters in any period are uncorrelated with
manufacturing shares of employment in 1975, which again is the only local data used as inputs to
solve the counterfactual model.

Due to the limited length of data for an individual commuting zone, I pool commuting zones and
estimate a single elasticity. The results are presented in Table 7. The IV estimate is substantially
higher than the OLS estimate.

5. THE CONTRIBUTION OF FIRM CREATION TO GROWTH

I now use the estimated model to perform four exercises, which together quantify the contribution
of firm creation to growth. First, I show the impulse responses of changes in local employment and
wages to reductions in the cost of entry, incorporating the endogenous responses of employment
and population movements. I decompose the total changes into a component due to the initial
shock and a dynamic component that reflects feedback from labor mobility.

Second, I decompose changes in wages at both the local and aggregate level into contributions
from firm creation and from incumbent efficiency improvements. Third, I study the outcomes of
the model under persistent, anticipated changes to local fundamentals, and quantify the role of
firm creation in amplifying local shocks.

Finally, I use the model to consider how local investment decisions amplified aggregate structural
change in recent decades. In particular, I study the contribution of firm creation dynamics to ampli-
fying the differences in employment and wage growth between areas specialized in manufacturing
versus those specialized in services in 1975, incorporating full general equilibrium dynamics.

5.1 Dynamic Contributions to Employment and Wage Growth

I first consider the dynamic response of local economic activity to a subsidy that lowers the cost
of entry τ. Beginning from a stationary equilibrium, an unanticipated subsidy to the entry cost
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Figure 9: Impulse Responses of Employment and Wages to a Fall in Entry Costs τ
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Note: This figure plots impulse response for employment, wages and the number of firms to a one-time, permanent
shock to entry costs τin that location, holding all other regions the same. The shock is calibrated to deliver a 1% increase
in the long run number of firms. Dotted lines represent the counterfactual outcome when labor is not allowed to move.

occurs in a single location, the size of which is chosen to increase the long-run number of firms by
1%. In Figure 9 I plot the dynamic response of local economic activity.

In the long-run, wages increase by 0.3% due to the estimated returns to scale in the production
structure. Employment increases by 0.4% as workers move to the area to take advantage of the
higher wages. Two central messages emerge from this exercise. First, the dynamics are slow; after
5 years, the baseline effects of the shocks are still barely halfway to their long run values. This
reflects the difficulty of adjusting the mass of firms quickly in response to local shocks.

Second, there is substantial endogenous feedback. The dotted lines show the response of the mass
of firms and wages if no labor is allowed to relocate to the affected location. The response here
is 60% smaller, suggesting that new workers brought in by the initially higher wages themselves
provide an important impetus to local demand.

To see this another way, in Figure 10 I show the dynamics out of steady state after an impulse
to local TFP. Panel (a) considers a one time, unforeseen permanent increase in Bj,t of 1% in one
location only, which then persists for all time. The shock immediately causes the local wage to rise
1%, and since labor is free to move at all times, an immediate rise in employment. The dynamics
of firm creation then respond to this increase in local demand by slowly rising to an almost 3%
increase in the baseline level. The long run increase in wages is almost double the initial impulse.
Panel (b) shows the propagation of a temporary shock, and reveals that the firm creation dynamics
act to prolong and propagate the effects of the initial impulse over time.

I now turn to the role of firm creation in driving aggregate wage growth. The estimated model
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Figure 10: Impulse Responses of a Shock to Local Productivity
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Note: This figure plots impulse responses to a permanent (Panel (a)) and temporary (Panel(b)) shock to local productiv-
ity in the full estimated model.

allows us to perform a simple decomposition of per-capita wage growth into a contribution for
Nj,t, and a joint contribution of TFP Bj,t and incumbent efficiency Zj,t. For ease of interpretation,
I abstract from sectoral differences for this exercise, and use equation (6) and the implied joint σ

from the impulse response in 9 (which gives σ = 3.9) .

I apply this equation to data on changes in local wages at the commuting zone level. On the
right hand side of the equation, I use rolling five-year windows of the changes in the number of
local establishments. Two results are of interest, presented in Figure 11. First, in most years, a
substantial fraction of wage growth at the commuting zone level is attributable to firm creation.
Panel (a) shows the inter-quartile range of this fraction for the past 25-years, as well as the median,
which averages 26% during this period.

In Panel (b), I compute employment-weighted changes in real wages for each 5-year window at
the commuting zone level. Summing these across all commuting zones yields a figure for aver-
age real wage growth for the entire United States. I do the same aggregation for changes in the
numbers of establishments. We can see that U.S. real wage growth also has a substantial compo-
nent due to firm creation. This contribution declined substantially in the Great Recession, along
with real wage growth, reflecting a significant shortfall in the number of new firms. It has recov-
ered somewhat in the years since. However, the recovery in firm creation is driven by a few large
metropolitan areas, which have seen renewed business dynamism since 2008. It is not apparent in
the median commuting zone, which, as Panel (a) in Figure 11 shows, has continued to see persis-
tently low entry rates. This graph also shows that the surge in real wage growth in the 1990s was
not due to a surge in business creation. Other work (e.g. Fernald (2015)) has documented that this
surge likely reflected one-time TFP improvements from the ICT revolution, which have not been
repeated since.

These figures for wage growth are substantially higher than the fraction of productivity growth
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Figure 11: Firm Creation and Real Wage Growth
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Note: Panel (a) plots the median fraction of commuting zone wage growth due to changes in the number of establish-
ments in the estimated model, as well as the interquartile range. Wage growth is computed as the log change in the
average real wage from year t to year t + 5. Real wages at the commuting zone level are computed by deflating nom-
inal wages by the U.S. CPI. Panel (b) aggregates these changes for the whole U.S., weighting the observations for each
commuting zone by employment in each year. Data is from the Quarterly Census of Employment and Wages.
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Figure 12: Simulated Local Growth Rates for Full Model and Underlying Shocks

Note: This figure shows the distribution of simulated 10-year growth rates in employment under perfect foresight, and
where the process for local productivity follows the process outlined in Section 5.2. 10-year employment changes are
defined as the log change change in total employment at the commuting zone level between year t and year t + 10.
The distribution for the full estimated model shown in blue, simulating 663 commuting zones for 100 years 10 times.
The distribution when shutting down endogenous firm creation is shown in green. The red line shows the distribution
of actual (demeaned) 10-year growth rates in employment using data from the QCEW, for commuting zones with
employment over 100,000, from the years 1990-2015.

due to entrants calculated in Garcia-Macia et al. (2019), despite the fact that the calibrated σ in
that paper is 4, virtually identical to the 3.9 here. There are two reasons for this. First, by looking
at 5-year horizons, the drag that the small size of entrants at entry reverses quickly, due to their
fast initial growth. As such, at a longer time horizon the contribution from variety gains is much
more apparent. Second, there is no role for creative destruction at entry in this model, whereas in
Garcia-Macia et al. (2019) new entrants may steal existing products.

5.2 Persistent, Anticipated Shocks and Propagation

I now consider the role of firm creation in propagating and amplifying fundamental location
shocks. To do so, I go beyond data description to postulate a simple process for location pro-
ductivity Bj,t, and study how the model behaves under this process.

In particular, I suppose that the the growth rate of Bj,t, denoted gB
j,t, follows an Ornstein-Uhlenbeck

process, such that
dgB

j,t = −θgB
j,tdt + ςdWj,t

where Wj,t is a standard Weiner process. This process is particularly convenient for capturing
persistent differences in the growth of areas that is not driven by the model mechanism of the
paper. In this formulation, θ indexes how quickly the growth rate of local productivity returns
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to its long-run (zero) mean, and controls the persistence of growth in location fundamentals. ς

controls the volatility of the growth rate process. I assume that the realizations of these paths
are drawn at time 0, and that firms continue to fully anticipate the paths for productivity and
population in their location, making their entry decisions accordingly

I choose these parameters to exactly match two central moments from the data. Keeping all other
model parameters as estimated in Section 4, I first target the variance in 10-year growth rates in
employment at the commuting zone level, where I calculate this from the QCEW. Second, I target
the autocorrelation of the growth rate in employment at a 10-year horizon. With calibrated values
for θ and ς in hand, I then repeatedly simulate the model under this process for 100 year time
horizons.

In Figure 12 I show the simulated distribution of 10-year employment growth rates.19 I then assess
the role of the fundamental shocks to local productivity in driving this dispersion by shutting off
firm creation entirely, keeping the number of firms in each location fixed at their initial values. The
distribution of growth rates just driven by local productivity is show in blue, and the distribution
in the full model is shown in green.

The standard deviation in 10-year employment growth rates is almost three times as high in the
full model as in the model that only experiences local productivity shocks and no firm dynamics.
Places that see local employment booms find these booms amplified significantly by the process of
firm creation, which adds to the demand for new workers and significantly propagates surges in
employment.

5.3 Firm Creation’s Contribution to Spatial Structural Change

I lastly consider the role that firm creation has played in facilitating the changing patterns of em-
ployment growth documented in Section 4. To do so, I take structural change in the model to be
driven by a fall in aggregate manufacturing output Πt which affects all manufacturing firms in
the economy, in the same way as I did when generating the instruments for estimation. The most
straightforward interpretation of this shock is a trade shock driven by developing country compe-
tition. Ordinarily, we might think of this as affecting the equilibrium relative prices of manufac-
turing goods. Without an explicit model of trade, such a notion can be mapped onto movements
in Πt, which directly affects the relative prices of goods and services within a location.

I again solve the full model for the path for Πt which exactly matches the series for the aggregate
share of U.S. employment in manufacturing, and recover implied commuting-zone level growth
paths. I retain the assumption of perfect foresight on the part of individual firms, such that they
anticipate the fall in manufacturing productivity through Πt from 1975 onwards.20 I also take the
path for aggregate employment Lt as exogenous and fully anticipated on the part of the firms.
Lastly, I assume no changes to location fundamentals (Bj,t , Aj,t and mjt) from their values in 1975,

19I begin the simulation from a steady state calibrated to data in 1975, though the results are robust to this choice.
20Firms still face idiosyncratic uncertainty with respect to their efficiency before before and after entry.
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Figure 13: Contribution of Startup Deficit to Spatial Structural Change

(a) Baseline Estimated Model (b) Model Equalizing Startup Rates

Note: This figure plots the evolution of employment across commuting zones using the baseline estimated model under
two scenarios. Panel (a) shows the model-implied growth in employment under the path for manufacturing produc-
tivity which matches the estimated decline in manufacturing employment. Panel (b) shows growth when fixing the
number of firms in both manufacturing and services to their baseline values in 1975. The four color groups correspond
to the four groups of 1975 manufacturing shares employed in Figure 8: blue (less than 20%), dark grey (20-30%), light
grey (30-40%) and red (over 40%).

which are calibrated to rationalize observed data on wages, employment by sector and number of
firms by sector within each commuting zone for that year.

Panel (a) in Figure 13 plots the implied paths for employment relative to 1975 in every commuting
zone in the full estimated model. The colors correspond to the same groupings of commuting
zones used in Figure. In Figure 33 in Appendix A.14 I show average employment growth within
each of the four groupings. Recall that ε was estimated such that the gap between the least and
most manufacturing-intensive group (blue and red) in 2015 matches the data.

In Panel (b) I plot the outcomes of the model when shutting down endogenous investment dy-
namics. I equalize the firm entry rates in every region to be the exogenous exit rate δ for the entire
period of 1975-2017. As such that the entire effect of structural change is captured by the move-
ment of workers across firms. Under this scenario, dispersion is greatly reduced; the difference
in employment growth between the service heavy and manufacturing heavy commuting zones
is on average only 37%. Put another way, had entry rates been equalized across regions during
this period, the manufacturing-heavy commuting zones in the U.S. Northeast and Midwest would
have almost 10% more employment relative to what we see today. While the decline of manu-
facturing would have still driven marked regional divergence, this divergence was amplified and
propagated by endogenous firm creation decisions.

To see the regional implications directly, in Figure 14 I map estimates of the “startup deficit” im-
plied by the model in each commuting zone. I define this deficit as the total number of local firms
in the full model in 2015 relative to that in the scenario where entry rates are equalized across space
between 1975 and 2015. Commuting zones in red are those for which the deficit is positive, reflect-
ing an initial specialization in manufacturing, and consequently slower firm creation dynamics
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Figure 14: Model-Implied Startup Deficits Due to Structural Change

Note: This figure shows the model-implied startup deficit in each U.S. commuting zone when the productivity process
for aggregate manufacturing productivity Πj,t is chosen to exactly match aggregate U.S. manufacturing employment.
The deficit is calculated as the ratio of the model-implied mass of firms at the local level in 2015 against the counter-
factual outcome in the same year where Πj,t is held constant from 1975-2015. Cells are missing where manufacturing
employment in the 1975 QCEW is suppressed.

over the last forty years. Two regions stand out as “missing” a significant number of firms. The
first are the classic US Rustbelt states, stretching from New York to Wisconsin along the shores of
the Great Lakes. A second zone is apparent moving through Tennessee, Kentucky and parts of
Virginia and North Carolina. While these regions have also experienced a range of other changes
that are not captured in the model, this analysis suggests that to understand their recent growth
experiences, a deficit of new firms driven by the flight of manufacturing and local workers is an
essential part of their story.

6. CONCLUSION

New firm creation is central to economic growth. This paper has studied how firm creation affects
employment and wage growth at the local level, and thereby shapes the fortunes of cities and local
economic areas. There are three key takeaways.

First, the local startup rate is essential to understanding the dynamics of local growth. Its persis-
tent contribution to new jobs, combined with the uniform contraction of incumbents across space,
places startups squarely in the driving seat of local growth experiences. The absence of differential
firm lifecycles across space only further serves to highlight the role of firm creation. At the same
time, this absence provides a cautionary bound on the importance of density-based externalities
and models of selection to explaining differences in firm output across space.

Second, one way to understand the persistence of the startup rate and its contribution to growth
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is through the interaction of increasing returns and labor mobility. At both the local and aggregate
level, variety gains through firm creation drive significant wage and employment growth. Though
this is an old idea in economic geography, formal dynamic models are rare. The widespread avail-
ability of large worker- and firm-level datasets offer the tantalizing possibility of quantifying the
importance of this interaction. This paper is a step towards that goal.

Third, considering firm creation dynamics sheds new light on fundamental questions facing the
U.S. economy. The decline of manufacturing has devastated the fortunes of many cities and towns
throughout the U.S. This paper has emphasized that it is not only the direct effects of structural
change which matter. Manufacturing’s flight has spilled over onto firm creation decisions in other
local sectors, compounding the pain significantly and trapping areas in a spiral of decline. Under-
standing these dynamics is the first step towards developing solutions.
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A. EMPIRICAL APPENDIX

A.1 Employment and Wage Growth at the Local Level

Figure 15: Distribution of Commuting Zone Level Employment and Payroll Growth
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(b) Real Payroll Growth
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Note: This figure shows an estimate of the distribution of cumulative growth in employment (Panel (a)) and payroll
(Panel (b)) at the commuting zone level. The source data is the public-use County Business Patterns. Commuting zones
are defined using the boundaries from the U.S. Census for the year 2000. Aggregation from county files to commuting
zone level is done by the author. Percentiles of cumulative growth are calculated for each year, and averages are taken
within percentiles. Real payroll for each commuting zone is calculated via deflating nominal payroll by the CPI in each
year.

In this section of the Appendix I document the variability of growth at the local level in the U.S. over the last
40 years. I use the public-use County Business Patterns to construct a panel of 703 commuting zones which
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together form a complete partition of the U.S. I then examine how total employment and total payroll have
evolved within each of these commuting zones over the past 40 years. Figure 15 shows how variable growth
at the local level has been by representing the distribution of cumulative growth at the local level during
this period. For employment, mean cumulative growth between 1975 and 2016 was 105%, with a standard
deviation of 108%. The 90-10 ratio is substantial: at the 90th percentile, cumulative growth in employment
was 231%, while at the 10th percentile it was 15%. Total real payroll growth shows even more dispersion
across commuting zones. In Figure 16 I plot illustrative sample paths for some well-known areas.

Figure 16: Sample Commuting Zone Employment Growth Paths
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Note: This figure overlays sample employment growth paths for five commuting zones onto Panel (a) of Figure 15.

A.2 Employment Growth and The Startup Rate

This section of the Appendix explores in more detail the relationship between employment growth and the
startup share presented in Figure 1.

In Figure 17 I show an estimate of the conditional distribution of 10-year employment growth at the local
level against the startup share in that commuting zone. Census disclosure rules prevent the release of
scatter plots, but much of the same information can be obtained from examining a representation of the
conditional distribution. I summarize this by four quantile regressions (at the the 90%, 75%, 25% and 10%
level) of 10-year forward employment growth on 20 quantiles of the startup share, as well as reproducing
the conditional mean function from Figure 1. While there is variation around the mean, the current start-up
share robustly predicts growth in employment.
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Figure 17: The Conditional Distribution of 10-Year Employment Growth at the CZ Level
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Note: This figure shows an estimate of the conditional distribution of 10-year forward employment growth against the
start-up percentage in a given year at the commuting zone. Conditional quantiles are computed by conducting quantile
regressions of 10-year employment growth on 20 dummy variables for the startup percentage during. Employment
growth is defined as the log change in total employment at the commuting zone level between year t and t + 10, and
the startup percentage is the fraction of establishments who are either aged 0 or 1 year in year year t.

In Table 2, I estimate the relationship between local employment growth and the start-up percentage with
controls. Panel A regresses employment growth in log changes at the local level from year t to year t+ 10 on
the fraction of establishments that are startups (establishments of age 0 or 1) in year t, and using the years
1980, 1990 and 2000. Panel B conducts the same analysis using employment growth from year t to year t+ 1.
The local unit of analysis is either commuting zone or county.

Columns I.A and II.A. regresses the log employment change on the startup fraction with no controls. I.B and
II.B controls for industry employment shares in the location in year t, where these industries are defined as
employment at the 1-digit NAICS level. NAICS codes are mapped to all establishments using the work of
Fort and Klimek (2018). Columns I.C and II.C controls for the log of employment, and I.D and II.D includes
local area fixed effects. In all cases, these start-up fraction is strongly associated with growth in both the
next year, and the subsequent 10 years.

I now consider more detail in the conclusion of Fact 2. While Figure 2 decomposes growth across areas
ranked by their initial startup percentage, it is instructive to ask how this picture changes when we look at
areas ranked by their growth performance. In Figure 18 I repeat the estimation of equation (1), with one key
difference. In each year, I assign each commuting zone to one of 10 deciles according to their (forward) 10
year employment growth from that year. I then take the means of each term in equation (1) across each one
of the ten deciles.
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Table 2: Estimates for Local Employment Growth By Start-Up Percentage

Dependent Variable: Log Employment Change × 100

Commuting Zone Level County Level

Panel A: 10-Year Growth I.A I.B I.C I.D II.A II.B II.C II.D

Startup Fraction 156.2∗∗∗ 196.7∗∗∗ 195.0∗∗∗ 99.51∗∗∗ 180.6∗∗∗ 188.2∗∗∗ 189.8∗∗∗ 126.2∗∗∗

(14.12) (15.44) (15.74) (10.38) (12.98) (14.94) (15.19) (10.38)

Log Employment 0.798∗ -1.458∗∗∗ -0.581 -2.412∗∗∗

(0.436) (0.333) (0.514) (0.209)

1-digit Industry Emp. Shares No Yes Yes Yes No Yes Yes Yes
Local FE (CZ or County) No No No Yes No No No Yes
R-squared 0.107 0.107 0.169 0.354 0.097 0.111 0.112 0.246
Observations 2,100 2,100 2,100 2,100 9,200 9,200 9,200 9,200

Panel B: 1-Year Growth

Startup Fraction 27.53∗∗∗ 35.07∗∗∗ 35.45∗∗∗ 28.02∗∗∗ 25.72∗∗∗ 28.02∗∗∗ 28.23∗∗∗ 19.70∗∗∗

(0.9789) (1.202) (1.250) (1.627) (0.529) (0.609) (0.622) (0.705)

Log Employment -0.079∗∗ -9.904∗∗∗ -0.065∗∗∗ -7.211∗∗∗

(0.040) (0.271) (0.026) (0.114)

1-digit Industry Emp. Shares No Yes Yes Yes No Yes Yes Yes
Local FE (CZ or County) No No No Yes No No No Yes
R-squared 0.045 0.055 0.055 0.233 0.031 0.034 0.034 0.170
Observations 24,000 24,000 24,000 24,000 104,000 104,000 104,000 104,000

Note: This table reports the estimated coefficients from regressing employment growth at the local level on the start-up
percentage of the location, defined as the fraction of establishments of age 0 and 1. The sample period is from 1980-2005
for 10-year growth (for example, the observation for 2005 includes 10-year growth from 2005 to 2015). Observation
counts have been rounded to accord with U.S. Census Disclosure rules. *** denotes significant at the 1% level, * denotes
significant at the 5% level, * denotes significant at the 10% level.
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Figure 18: Entrant Contributions to 10-Year Employment Growth
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Note: This figure plots the contributions to future 10-year employment growth at the commuting zone level by suc-
cessive cohorts of entrants, as well as current incumbents. Areas are assigned in each year to 10 deciles of 10-year
employment growth. Decomposition is as in equation (1). Years are from 1990-2015 (for example, 10-year growth for
1990 is taken for the period 1980-1990). N = {24, 000}, where this count has been rounded to accord with U.S. Census
disclosure rules.

There is of course a larger degree of variation in total 10 year employment growth across these deciles than
is apparent when splitting commuting zones by their startup percentage. However, the two conclusions I
drew in Section 2 are sustained in this analysis. First, there is a strong contribution to total employment
growth from each cohort of entrants that starts up during the 10 year period, with this contribution much
greater in areas with high rates of employment growth. The persistence of the startup contribution is very
salient; the higher deciles have high entrant contributions across all cohorts.

Second, it remains the case that incumbent establishments subtract from employment growth over the 10-
year time horizon. However, split by growth deciles, there is more variation in the contribution of incum-
bents than when looking by the startup percentage in Figure 2.

To help understand why, I conduct a related exercise, and decompose total growth in the number of establish-
ments at the commuting zone level over 10 year horizons. From this we can see what role differential exit
of establishments is playing in Figures 18 and 2. In particular, for each commuting zone I write the total
growth in the number of establishments as

(24)
Nestabsi,t − Nestabsi,t−10

Nestabsi,t−10
= ∑

a∈{0,1,..,10}

Nentrantsa
i,t

Nestabsi,t−10
+ (

Nincumbi,t

Nestabsi,t−10
− 1)

where Nestabsi,t is the number of establishments in commuting zone i in year t, Nentrantsa
i,t is the number

of surviving entrants of age a who entered during the 10 year period, and Nincumbi,t is the number of
incumbents who existed 10 years prior and are still surviving by period t.
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Figure 19: Decomposition of Growth in the Number of Establishments Across Cohorts

(a) Across Areas Ranked by Startup Percentage 10 Years Prior
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(b) Across Areas Ranked by 10 Year Growth in Employment
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Note: This figure shows a decomposition of 10-year growth in the number of establishments at the commuting zone
level into contributions from incumbents and successive cohorts of entrants. Panel (a) splits the decomposition by
the deciles of the startup percentage 10 years prior, while Panel(b) splits by deciles of 10-year employment growth.
Decomposition is as in equation (1). Years are from 1990-2015 (for example, 10-year growth for 1990 is taken for the
period 1980-1990). N = {24, 000}, where this count has been rounded to accord with U.S. Census disclosure rules.

I then assign each commuting zone to the same two groupings as above: 10 deciles of the startup percentage
10 years prior at the commuting zone level, and 10 deciles of 10-year employment growth at the commuting
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Figure 20: Local Growth and Local Exit
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Note: This figure compares 10-year employment growth at the commuting zone level to the 10-year exit rate of estab-
lishments. Deciles of employment growth split commuting zones into 10 ranked bins of 10-year employment growth.
The 10-year exit rate is the fraction of establishments present in the commuting zone at year t which are no longer
present in year t + 10. Years are from 1990-2015 (for example, 10-year growth for 1990 is taken for the period 1980-1990).
N = {24, 000}, where this count has been rounded to accord with U.S. Census disclosure rules.

zone level, for the period 1990-2015. I average each of the terms of the right hand side of equation 18 within
these deciles. The results are plotted in Figure 19.

The black bars are effectively the 10-year exit rate of incumbent establishments. This is strikingly uniform
across areas in both decompositions. Effectively, incumbent establishments exit at the same rate over a
10-year horizon regardless of the employment or entry dynamics.

To show this point more sharply, in Figure 20 I show plot the average 10-year employment growth within
the 10 deciles of Employment growth from Panel (b) in 19. The dispersion is large: 10-year employment
growth ranges from over 50% in the highest decile, to -10% in the lowest. Nevertheless, across all 10 cells,
the 10-year exit rate of establishments is essentially constant, ranging between 53% and 55%.

What this shows is that regardless of the medium-run business conditions, establishments are being de-
stroyed at constant rates across space. As discussed in the main body of the paper, this has significant
implications for theories of local growth, and how expansion and contraction of areas happens at the micro
level.

A.3 Wage Growth and The Startup Rate

In Table 3 I repeat the regressions in Table 2, but now with 10-year growth in average wages at the local
level as the dependent variable. The central right hand side variable continues to be the startup percentage
in year t, and growth is taken to be the log change in average wages from year t to year t + 10.
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Table 3: Estimates for Local Wage Growth By Start-Up Percentage

Dependent Variable: Log Wage Change × 100

Commuting Zone Level County Level

10-Year Growth I.A I.B I.C I.D II.A II.B II.C II.D

Startup Fraction 91.41∗∗∗ 104.3∗∗∗ 34.23∗∗∗ 46.31∗∗∗ 55.13∗∗∗ 57.9∗∗∗ 30.39∗∗∗ 32.68∗∗∗

(4.22) (4.32) (4.12) (6.60) (2.60) (2.70) (2.95) (2.76)

Log Employment -1.40∗∗∗ -0.82∗∗∗ -1.16 -1.25∗∗∗ -1.22∗∗∗ -1.17∗

(0.079) (0.081) (1.25) (0.06) (0.06) (0.58)

1-digit Industry Emp. Shares No Yes Yes Yes No Yes Yes Yes
Local FE (CZ or County) No No No Yes No No No Yes
R-squared 0.075 0.114 0.377 0.647 0.029 0.0496 0.203 0.522
Observations 11,000 11,000 11,000 11,000 50,000 50,000 50,000 50,000

Note: This table reports the estimated coefficients from regressing average wage growth at the local level on the start-up
percentage of the location, defined as the fraction of establishments of age 0 and 1. The sample period is from 1980-2005
for 10-year growth (for example, the observation for 2005 includes 10-year growth from 2005 to 2015). Average wage
at the local level is computed by aggregating total local payroll and dividing by total employment in the local area.
Observation counts have been rounded to accord with U.S. Census Disclosure rules. *** denotes significant at the 1%
level, * denotes significant at the 5% level, * denotes significant at the 10% level.

A.4 Autocorrelation of the Startup Rate

Figure 21: Autocorrelation of Local Startup Rate
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Note: This figure plots estimates of the autocorrelation of the startup rate at the local level at different time horizons.
The startup rate is defined as the fraction of establishments who are of age 0at time t. Autocorrelation is computed
across the panel of commuting zones, using the correlation of all observations of the startup-rate in time t with the same
variable at time t− x, for x = {1, ..., 10}. Data comes from the LBD. N = {17, 500; 76, 000; 113, 000}, where these counts
has been rounded to accord with U.S. Census disclosure rules.
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Figure 22: Establishment Growth Rates Across Space: County Estimates
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Note: This figure plots the estimated growth rates of establishments by age in three different categories of county
population size using the results from Table 4 . 95% confidence intervals in grey. N = 104, 000, 000, where this count
has been rounded to accord with U.S. Census disclosure rules.

A.5 Establishment and Firm Growth Rates

Figure 22 reproduces Figure 3 with the population of the county in the year of the establishment’s birth as
the local population. The coefficient βa is restricted to be the same for all ages. The results are unchanged-
establishments do not grow faster in denser areas.

Figure 23 plots the results from reestimating equation (2) allowing βa to vary by age. The confidence inter-
vals include the decreased precision for the estimated growth rates by age (not reported in Table 4). Overall,
it appears that establishments grow slightly faster in denser areas for the first four years of life, and then
slightly slower for the rest of their life. However, for each size classification considered (small, medium or
large counties), the estimated confidence intervals overlap. When considered over the first 15 years of life,
establishments do not grow systematically faster in denser areas.

In Figure 24 I estimate the same equation with firms as the unit of analysis. Firms can grow their employ-
ment in two ways: intensively within the establishments they own, or extensively by adding new estab-
lishments. I consider only total employment on the LHS of equation (2). Population on the RHS is now
population at the time of birth, and in the place of birth, for firms who begin as single-establishment firms
of age zero. Age of the firm is defined as the age of the oldest establishment the firm owns.

Defining the birthplace of the firms that begin with a single establishment is complicated the process by
which firm ID’s are assigned in the the LBD. As discussed in Ding et al. (2019), firm ID’s break by construc-
tion when firms grow or shrink in a particular way. In particular, when a single-establishment (SU) firm
becomes/joins a multi-establishment (MU) firm, it is assigned a new firm ID. Likewise, if an existing MU
firm loses all but one establishment, its firm ID will also change.

To account for this, I modify the LBD firm ID’s according to the following rules:

a) If two or more SU establishments join an MU firm at t, the oldest establishment receives the MU firm
ID since its birth. All other establishments keep their SU IDs until the year they join the MU firm.
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Table 4: Estimates for Establishment Growth Rate Differences By Density

Dependent Variable: Log Employment Change × 100

Commuting Zone Population County Population

I.A I.B I.C II.A II.B II.C

Log Population 0.00931 -0.00659
(0.02042) (0.02046)

Log Population × Age = 1 0.48∗∗∗ 0.4884∗∗∗ 0.561∗∗∗ 0.578∗∗∗

(0.068) (0.062) (0.101) (0.095)

Log Population × Age = 2 0.262∗∗∗ 0.271∗∗∗ 0.244∗∗∗ 0.262∗∗∗

(0.043) (0.036) (0.055) (0.048)

Log Population × Age = 3 0.103∗∗∗ 0.112∗∗∗ 0.075∗∗∗ 0.093∗∗∗

(0.029) (0.022) (0.030) 0.024)

Log Population × Age = 4 0.057∗∗ 0.067∗∗∗ 0.023 0.041∗∗

(0.026) (0.019) (0.025) (0.019)

Log Population × Age = 5 -0.018 -0.008 -0.044∗∗∗ -0.026
(0.024) (0.018) (0.022) (0.017)

Log Population × Age = 6 -0.064∗∗∗ -0.054∗∗∗ -0.095∗∗∗ -0.077∗∗∗

(0.018) (0.016) (0.015) (0.016)

Log Population × Age = 7 -0.115∗∗∗ -0.105∗∗∗ -0.140∗∗∗ -0.122∗∗∗

(0.021) (0.016) (0.016) (0.016)

Log Population × Age = 8 -0.147∗∗∗ -0.137∗∗∗ -0.164∗∗∗ -0.146∗∗∗

(0.022) (0.019) (0.020) (0.020)

Log Population × Age = 9 -0.188∗∗∗ -0.178∗∗∗ -0.186∗∗∗ -0.168∗∗∗

(0.019) (0.021) (0.020) (0.025)

Log Population × Age = 10 -0.142∗∗∗ -0.132∗∗∗ -0.154∗∗∗ -0.135∗∗∗

(0.023) (0.019) (0.019) (0.017)

Log Population × Age = 11 -0.194∗∗∗ -0.184∗∗∗ -0.196∗∗∗ -0.178∗∗∗

(0.019) (0.018) (0.017) (0.019)

Log Population × Age = 12 -0.139∗∗∗ -0.129∗∗∗ -0.164∗∗∗ -0.146∗∗∗

(0.024) (0.019) (0.019) (0.017)

Log Population × Age = 13 -0.095∗∗∗ -0.085∗∗∗ -0.140∗∗∗ -0.140∗∗∗

(0.020) (0.020) (0.017) (0.022)

Log Population × Age = 14 -0.110∗∗∗ -0.100∗∗∗ -0.138∗∗∗ -0.120∗∗∗

(0.024) (0.021) (0.017) (0.019)

Log Population × Age = 15 -0.100∗∗∗ -0.090∗∗∗ -0.115∗∗∗ -0.098∗∗∗

(0.024) (0.026) (0.023) (0.028)

4-digit NAICS Industry FE Yes Yes Yes Yes Yes Yes
State FE Yes No Yes Yes No Yes
R-squared 0.009 0.009 0.009 0.009 0.009 0.009
Observations 104,000,000 104,000,000 104,000,000 104,000,000 104,000,000 104,000,000

Note: This table reports the results from estimating equation (2) at the establishment level on data from the LBD, for
both county and commuting zone populations. Column A the density coefficients to be equal across establishment age.
N = {104, 000, 000}, where these counts have been rounded to accord with U.S. Census disclosure rules.
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Figure 23: Establishment Growth Rates Across Space

(a) CZ-level Estimates

0

.05

.1

.15

.2

G
ro

w
th

 R
at

e 
(L

og
 P

oi
nt

s)

0 2 4 6 8 10 12 14
Age (Years)

Small CZ (100K)
Medium CZ (1M)
Large CZ (10M)

(b) County-level Estimates
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Note: This figure plots the estimates of growth by age at the establishment level from estimating equation (2). Panel (a)
contains estimates for commuting zones, and Panel (b) for counties. Growth profiles are given for three different area
sizes in each case. N = 104, 000, 00, where this count has been rounded to accord with U.S. Census disclosure rules.

b) In rule (a), if two or more establishments have the same maximum age at t, then the largest establish-
ment receives the MU firm ID since its birth. All other establishments keep their SU IDs until the year
they join the MU firm.

c) In rule (b), if two or more establishments have the same maximum size at t,then the firm is flagged as
not possessing a birthplace, and dropped from the sample

d) In rule (a), if a younger establishment is 5 times larger in terms of total employees than the oldest
establishment, then this largest establishment receives the MU ID since birth. All other establishments
keep their SU IDs until the year they join the MU firm.

e) If a MU firm changes its MU firm ID at t, but possesses the same establishments in year t and t− 1,
then that new firm ID is replaced everywhere it appears by the original firm ID.

These rules allow the MU firm to be connected to a physical birthplace. Alternative algorithms for modify-
ing the firm ID’s are also available, developed in particular by Dent et al. (2018), and used for the first time
by Pugsley et al. (2018). These rules focus on more comprehensive procedures for accounting for mergers
and acquisitions at the firm level. In future research, I plan to explore the robustness of the conclusions of
this section to using these alternative firm ID’s.

As can be see in Figure 24, the conclusion for establishments holds true for firms as well. Firms born in
denser areas do not grow their employment faster conditional on survival in a systematic way over the
lifecycle.

A.6 Scale Elasticities

It is well known that establishments in denser areas are larger, pay higher wages and have higher sales
even controlling for detailed industry differences (see e.g. Combes et al. (2012)). Fact 3c shows that these
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Figure 24: Firm Growth Rates By Place of Birth

(a) CZ-level Estimates
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(b) County-level Estimates
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Note: This figure plots the estimates of growth by age at the firm level from estimating equation (2). Panel (a) contains
estimates for commuting zones, and Panel (b) for counties. Growth profiles are given for three different area sizes in
each case. N = 76, 000, 00, where this count has been rounded to accord with U.S. Census disclosure rules.

differences are constant with age. To establish this fact, I obtain the density elasticity of establishment scale
by age through a full set of non-parametric dummies by age and detailed industry controls. In particular, I
estimate the following series of equations:

yit =
A

∑
a=0

γaIAgeit=a +
A

∑
a=0

βaIAgeit=a × log(Popi) + Indi + µt + X ′itδ + εit(25)

Here yit is log employment of the establishment, log average wages, and log sales per worker. The right
hand side variables are as in equation (2). While equation (2) measures growth, equation (25)measures how
scale evolves with age.

Our interest is again in the coefficients βa, which describes how the elasticities of establishment scale vari-
ables with respect to local population evolve as the establishment ages. These are plotted for the full sample
in Figure 25 for the three outcome variables, at both the commuting zone and county level. Confirming ear-
lier studies, in the LBD establishments tend to be larger, pay higher wages and have higher sales per worker
in more populous areas. However, in all three cases, these elasticities are approximately constant over the
lifetime of an establishment. As such, not only are establishments in more populous areas not growing their
employment faster (as outlined in Fact 3a), they are not seeing faster growth in payroll or sales.

The result for average wages is already known in the urban literature, and was first documented by Faber-
man and Freedman (2016). I extend that result to a holistic analysis of the evolution of establishment scale
by density. Together, these facts suggest that the post-entry life-cycle of an establishment does not differ in
densely populated areas in an appreciable way.

While both equation (2) and equation (25) control for mean differences in industry growth rates and industry
scale, they do not do so by age. As a final check, I estimate scale elasticities for individual industry groups,
rerunning equation (25) separately for each group. The output is given in Figure 26. The headline conclusion
continues to hold: establishment scale evolves in parallel across areas of different density over the lifecycle.

Constructing the scale elasticity for sales per-worker involves some work to determine establishment level
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Figure 25: Scale Elasticities by Age

(a) Commuting Zone Level
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(b) County Level
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Note: This figure plots the density coefficients by age from estimating Equation (25), at the commuting zone
level (Panel (a)) and the county level (Panel (b)). Sales Per-Worker is reported for single-establishment firms;
results using all establishments are quantitatively very similar. 95% confidence intervals in grey. N =
{125, 000, 000; 125, 000, 000; 47, 000, 000} for Employment, Average Wage and Sales Per Worker respectively, where
these counts have been rounded to accord with U.S. Census disclosure rules.

sales, which is not a variable which appears in the current release (though there are plans to make this vari-
able available to approved researchers). Instead, a measure of revenue in the Business Register is available
for most firms that appear in the LBD from the year 1992 onwards. I follow the matching process of Moreira
(2015) to match these revenues to the Longitudinal Business Database.

For single-establishment firms, the match is straightforward. Revenue can be matched on the basis of Em-
ployer Identification Number. Following this procedure results in a revenue variable for 86% of firms. Con-
sidering sales-per worker for multi-unit establishments is complicated by the fact sales are only observed at
the firm level, and based on administrative tax records. The vast majority of firms in the Business Register
consist of only a single establishment, and I report the results for only a single establishment firm first.

However, multi-establishment firms account for large fractions of output and employment, and so an at-
tempt is also made to include these in the analysis. I consider two primary methods of apportioning sales
across multi-establishment firms. First, I assign sales to each establishment in proportion to the employment
of each establishment. Second, I assign them in proportion to the wage bill of the establishment. Results are
virtually identical under both specifications.

In Figure 26 I repeat the estimation of scale elasticities at the establishment level for five major sectoral
groupings: Skilled Tradable Services, Arts and Hospitality, Trade and Transport, Education and Medical,
and Manufacturing. The estimation uses the population at the commuting zone level. An enumeration of
the NAICS codes corresponding to each one of these groupings is found in the footnotes of Figure 26.

No systematic pattern of how the scale elasticities evolve with age is observable. A slight increase with
age is seen for the Arts and Hospitality and Trade and Transport, while decreases are seen for Education
and Medical and Manufacturing. These more detailed estimates give scant reason to change the overall
conclusions of Fact 3. While establishments start out larger in more populous areas across industries, they
do not appear to grow systematically faster, or see their scales increase more rapidly in these areas.
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Figure 26: Employment Scale Elasticities by Age: Industries

0

1

2

3

4

5

6

7

 D
e
n

si
ty

 E
la

st
ic

ty
 (

L
o

g
 P

o
in

ts
)

0 2 4 6 8 10 12 14
Age (Years)

Skilled Tradable Services Arts and Hospitality

Trade and Transport Education and Medical

Manufacturing

Note: This figure plots the density coefficients by age from estimating Equation (25) separately for major groupings of
two digit NAICS codes, using the Fort and Klimek (2018) concordance to map NAICS codes to SIC codes. Skilled Trad-
able Services are NAICS 51-55, and include Finance, Information and Management of Companies, as defined in Eckert
et al. (2019a). Trade and Transportation is composed of NAICS 42-29, and includes Retail, Wholesale and Transportation
and Warehousing. Arts and Hospitality is composed of NAICS 71 and 72, while Education and Medical is Sectors 61
and 62. Manufacturing is composed of NAICS 31-33.Estimation is done at the commuting zone level.

A.7 Commuting Zone and County Partition Summary Statistics

In Table 5 I report summary statistics for the partition of the set of commuting zones and counties em-
ployed throughout the paper. This partition splits the geographic units into 10 groups, with approximately
10% of the U.S. population in each group. The split is done using populations in the year 2000, which is
approximately the midpoint of the data from the LBD employed in this study.

A.8 Establishment Survival Function Estimation

In this Section I report the survival function estimates corresponding to the exit rates in Figure 4. These
employ the non-parametric Kaplan-Meier estimator. Establishments in the LBD are split into ten groups
according to the size of the commuting zone or county in which they were born. I use the same ten groups
as in Figure 5 and Table 5. I estimate the survival functions for all establishments born in the period from
1980 to 1995, and use data from 1980 to 2015 on their lifetime outcomes. Exit occurs when the establishment
is flagged as an establishment death in the LBD. There is some truncation given that not all such establish-
ments born between 1980 and 1995 have exited by 2015. The Kaplan-Meier estimator handles this truncation
naturally. The results are shown in Figure 27.

Differences in exit rates between densely and sparsely populated areas are quite negligible. We can see in
Panel (a) that exit rates are marginally higher at the start of life in large places. This is somewhat more pro-
nounced than the results for counties in Panel (b). These differences lead to a small dispersion in estimated
exit probabilities over the first 35 years of life: an establishment in the least dense group of commuting zones
has around a 2% higher chance of survival than one more in the most populous group.
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Table 5: Commuting Zone and County Partitions Summary Statistics

Commuting Zone County

Decile Count Mean Population Example Count Mean Population Example

1 435 64,519 Jackson, WY 1,898 14,818 Peach County, GA

2 115 242,717 Burlington, VT 565 49,750 Columbia County, PA

3 59 475,226 Savannah, GA 281 100,238 Napa County, CA

4 36 768,921 Ann Arbor, MI 159 176,522 Arlington County, DC

5 23 1,254,128 Salt Lake City, UT 92 303,893 Pulaski County, AR

6 16 1,755,426 Columbus, OH 57 491,407 Seminole County, FL

7 10 2,600,746 Denver, CO 39 720,857 Baltimore County, MD

8 7 3,770,746 Phoenix, AZ 27 1,040,510 Palm Beach County, FL

9 5 4,905,792 Houston, TX 16 1,705,231 Riverside County, CA

10 3 11,953,495 New York, NY 7 4,213,464 Cook County, IL

Note: This table reports summary statistics of the commuting zone and county partitions into ten deciles employed
throughout the paper. These deciles are employed in Figure 5 for establishment size by age, and Figure 4 for establish-
ment exit rates. County population data is taken from the U.S Census in 2000. Aggregation from county to commuting
zone level is done by the author using the commuting zones defined by the Census Bureau for the year 2000.

Figure 27: Survival Function Estimates

(a) Establishment Exit Rates by CZ Size
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(b) Establishment Survival Function by CZ Size
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Note: This figure plots the estimated Kaplan-Meier survival functions for all establishments born between 1980 and
1995, across ten deciles of commuting zone or county size in which the establishment was born. N = 125, 000, 000, where
this count has been rounded to accord with U.S. Census disclosure rules. Panels (a) plots the increments (exit rates) and
Panel (b) presents the survival functions. Deciles of commuting zone and county sizes are labelled in ascending order (
1st being the smallest), and correspond to the groupings summarized in Table 5.
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Figure 28: Conditional Distribution of Industry Diversity
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Note: This figure plots estimates of the conditional distribution of a measure of industrial diversity at the local level,
conditional on the number of establishments at the local level. Analysis is done at the commuting zone level. N = 700,
where this counts has been rounded to accord with U.S. Census disclosure rules.

In the main text in Figure 4, the three groupings used correspond to Decile 2 (100k population), Decile 5 (1M
population) and Decile 10 (10M population).

A.9 Industry Diversity and the Number of Local Establishments

In this Section I show the strong relationship between the size of a location and the industrial diversity
of that location. I begin by counting the number of six-digit NAICS industry codes represented at the
establishment level in the year 2000 for each commuting zone in the United States. I take this raw count as
a simple measure of “industrial diversity”, and relate it to measures of the size of the area.

Since U.S. Census disclosure rules prohibit the release of a scatter plots, one illuminating way to illustrate
the strength of the correlation is to show an estimate of the conditional distribution. To do this, I regress the
log of the number of industry codes against twenty quantiles of the log of the number of establishments at
the commuting zone level in the year 2000. In total, I conduct five non-parametric quantile regressions of
this relationship – at the 90th quantile of industrial diversity, the 75th, the median, the 25th and the 10th.

Figure 28 displays the estimates. As the number of establishments in a location increases, the diversity
of the industries which those establishments represent quickly increases. This relationship is one piece of
indirect evidence to support a central model building block (why wages increase with the total number of
firms). If a place has more detailed industry codes available, there is greater scope for firms to purchase
intermediate inputs locally, which saves on transportation costs and allows firms to improve their input
sourcing decisions.
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A.10 Sectoral Employment Shares

Figure (29) plot the evolution of manufacturing shares in the U.S. since 1990, both in shares (Panel (a)) and
in absolute numbers (Panel(b)).

A.11 Local Employment Growth Contributions

In this section I decompose employment growth at the local level into two separate parts: a contribution
from population growth, and another contribution from changing employment-population ratios. Between
any two periods, we can write the log of employment growth as

(26) log(
Et

Et−1
) = log(

Et

Pt
)− log(

Et−1

Pt−1
)︸ ︷︷ ︸

EPOP Ratio Growth

+ log(
Pt

Pt−1
)︸ ︷︷ ︸

Population Growth

where Et is the total private employment at the commuting zone level, and Pt is total adult population at the
commuting zone level. Employment comes from the QCEW at the county level, and total adult population
at the county level comes from the U.S. Census. I aggregate these to the commuting zone level.

I then average these contributions at the commuting zone level into four categories depending on the man-
ufacturing share of employment in 1975. These are the same categories presented in Figure 8. Panel (a) of
Figure 30 shows the mean contributions of Population Growth and EPOP Ratio growth as a fraction of total
employment growth, and Panel (b) gives the mean log change from equation 26 across the four categories
of manufacturing specialization.

During this period, the employment-population ratio grew markedly, due in part to the continued entry
of women into the labor force. However, population growth was the largest contributor to employment
growth across all regions, and this did not differ by manufacturing specialization in 1975.

A.12 Structural Estimation First Stage

In this section I present the first stage estimates for the model generated instruments for the numbers of
manufacturing firms (NM

j,t ) and service firms (NS
j,t). Recall that the moment conditions exploit variation

in changes in these instruments. Figure 31 plots the log-changes in the actual numbers of firms at the
commuting zone level over 5-year periods against the simulated numbers from the model.

The fit is quite strong, with an R2 of around 0.2 in both cases. Intriguingly, the model-generated predictions
neither under- or over-predict the true changes in numbers of firms on the micro level: the intercept is close
to zero, and the slope is close to 1.

A.13 Structural Model Estimates

In this Section I report the parameter estimates for the structural model. In Table 6 I report the parameters
describing the dynamics of the firm lifecycle, with the estimation as discussed in Section 4.3. I am able
to match the first four moments of the empirical growth rate distribution in the Longitudinal Business
Database exactly.
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Figure 29: Industrial Composition of the U.S. Workforce, 1990-2017
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(b) Employment Levels
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Note: This figure shows sectoral employment shares (Panel (a)) and sectoral employment levels (Panel (b)) for the
period 1990-2017. Source data is the Quarterly Census of Employment and Wages. Arts and Hospitality is composed of
NAICS 71 and 72. Construction is NAICS 23. Education and Medicine is NAICS 61 and 62. Manufacturing is composed
of NAICS 31-33. Other Services is Sector 81. Retail is composed of NAICS 44-45. Skilled Tradable Services are NAICS
51-55, and include Finance, Information and Management of Companies, as defined in Eckert et al. (2019a). Trade and
Transport is composed of NAICS 42 and 48-49, which is Wholesale and Transportation and Warehousing.
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Figure 30: Decomposition of Commuting Zone Employment Growth 1975-2015

(a) Relative Contributions to Employment Growth
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(b) Total Log Changes in Employment
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Note: Figure (a) shows the relative contributions to employment growth at the commuting zone level since 1975 of
population growth and changes in the EPOP ratio, averaged across four groups of commuting zones depending on their
manufacturing share of employment in 1975. These contributions are as defined in equation (26). Relative contributions
are computed by dividing each term on the right-hand side of (26) by the total log change in employment since 1975.
Figure (b) shows the total contribution both components of the right-hand side of (26). Data on population uses the
U.S. Census population estimates at the county-level, which I aggregate to the commuting zone level using commuting
zone boundaries in the year 2000. Data on employment and manufacturing specialization comes from the Quarterly
Census of Employment and Wages produced by the Bureau of Labor Statistics, and employs the SIC implementation of
industry classification.

Table 6: Structural Parameter Estimates for the Firm Lifecycle

Parameter Description Baseline Value Source/Moment

φu Arrival rate of productivity improvement 0.482 Mean employment growth of 0.75%

∆u Improvement step size 0.054 S.D in employment growth of 25%

φd Arrival rate of productivity deterioration 0.498 Skewness in employment growth -0.05 %

∆d Deterioration step size 0.036 Excess kurtosis in employment growth of 9 %

δ Exogenous death rate of firms 0.1 Average Exit rate of 10%

γ Curvature of utility for local capitalists 1 Set exogenously

ρ Discount rate of local capitalists 0.05 Set exogenously

Note: This table reports the estimated baseline model parameters. Estimation is done via. Simulated Method of Mo-
ments, matching the first four moments of employment growth rates in the LBD, and the average death rate of estab-
lishments.
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Figure 31: First-Stage Fit of Predicted Changes in Number of Firms Vs. Actual

Note: This figure compares the model-based simulations of changes in manufacturing firms (above) and services firms
(below) at five year time horizons to what actually occurred in the data from 1975 to 2015. The unit of observation is the
commuting zone. Simulated values are generated assuming the economy is in a steady state in 1975, and then solving
for the value of Πt which exactly matches the series for the aggregate labor share in manufacturing.
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Table 7: Structural Production Parameter Estimates

Parameter Description Estimate Standard Error First-Stage F Statistic

Production Parameters

σM Scale elasticity of wages for Manufacturing 2.36 (0.4) 642.3

σS Scale elasticity of wages for Services 4.01 (0.95) 789.9

ε E.O.S. between Manufacturing and Services 2.43 - -

v House price elasticity 0.92 (OLS=0.52) (0.18) 348.2

Note: This table reports the estimated structural production parameter estimates. Estimation is done via. exploiting
moment conditions based on aggregate structural change shifters. For the house price elasticities, OLS estimates are
reported in brackets. Standard errors for {σS, σM, ε} use the delta method, given that the moment conditions provide
estimates and asymptotic standard errors for {(σS − 1)−1, (σM − 1)−1, (ε− 1)−1}. Estimation is conducted for commut-
ing zones with at least 50,000 people.

Table 7 records the structural production estimates: the local scale elasticities and the house price elasticities.
OLS estimates are additionally given for the house price elasticities. Parameters are rather tightly estimated,
where standard errors are computed using the delta method (which is necessary given the moment condi-
tions in fact provide estimates of (σS − 1)−1 etc.).

In Figure 32 I show the data which pins down the choice of the congestion parameter ζ. I again aggregate the
Quarterly Census of Employment and Wages to the commuting zone level, and use it to compute average
real wage and average establishment size in each commuting zone, for the years 1980-2015.

I then regress the log of both of these variables on the log of commuting zone employment, obtaining the
coefficients β̂w and β̂size. A representative plot from the year 2000 is shown in Figure 32. ζ is solved from
equation (17) as the root of

β̂size =
1

1 + ζ

(
ζ − β̂w

)

A.14 Contribution of Firm Creation to Spatial Structural Change

Figure 33 provides the means of cumulative employment growth in each year in the four groupings of
commuting zones considered in Figure 13.
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Figure 32: Cross Section of Average Wages and Average Establishment Size

(a) Average Wages By Area Size
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(b) Establishment Size By Area Size
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Note: Figure (a) shows average wage at the commuting zone level for the year 2000. Average wage is computed by
dividing total payroll deflated by the U.S. CPI in the commuting zone by total employment. Figure (b) shows average
establishment size at the commuting zone level for the year 2000. Average establishment size is computed by dividing
total employment by the total number of establishments. Data for average wages is from the County Business Patters,
and average establishment size is from the Quarterly Census of Employment and Wages produced by the Bureau of
Labor Statistics.

Figure 33: Contribution of Startups to Spatial Structural Change

(a) Baseline Estimated Model (b) Model without Endogenous Investment

Note: This figure plots the evolution of employment across commuting zones using the baseline estimated model under
two scenarios. Panel (a) shows the model-implied growth in employment under the path for manufacturing produc-
tivity which matches the estimated decline in manufacturing employment. Panel (b) shows growth when fixing the
number of firms in both manufacturing and services to their baseline values in 1975. The four color groups correspond
to the four groups of 1975 manufacturing shares employed in Figure 8: blue (less than 20%), light grey (20-30%), dark
grey (30-40%) and red (over 40%).
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B. THEORY APPENDIX

B.1 Proof of Lemma 1

Write the discounted value of profits in sequence form as

Vj,t(z) = Et

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(

Bj,s

wj,s
)σ−1Yj,szsds

]
dT

where the expectation is taken over the stochastic random variable zs (all other variables are known with
perfect foresight). At time s, zs is given by

zs = ztDu
s Dd

s

where (Du
s , Dd

s ) are independent counting processes taking on values on the countable set Υu ×Υd, where

Υu ≡ {1, ∆u, ∆2
u, ...} Υd ≡ {1, ∆d, ∆2

d, ...}

with joint probability mass function

P(Du
s = Υu

n , Dd
s = Υd

m) =
(φus)n

n!
e−φus · (φds)m

m!
e−φds

and similarly for Dd
s , where Yu

n and Yd
m represent the nth and mth elements of Υu and Υd respectively. Hence

Du
s Dd

s is independent of zt. Furthermore, each firm is infinitesimal, and the paths for aggregate variables
are taken as given from the point of view of the firm. So we can write

Vj,t(z) = zEt

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(

Bj,s

wj,s
)σ−1Yj,sDu

s Dd
s ds

]
dT

= νj,tz

Sufficient conditions for finite values. For simplicity we will assume aggregate labor Lt is constant; grow-
ing aggregate labor supply can be easily incorporated. First note that Yj,s is bounded above by σ−1

σ wj,sL,
where L is aggregate labor supply, so we can write

Vj,t(z) ≤ LzEt

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(Bj,s)

σ−1wσ
j,sDu

s Dd
s ds
]

dT

Now supposing the value of the firm is finite, by Fubini we can interchange the integrals to get

= Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(Bj,s)

σ−1wσ
j,sLsEt[Du

s Dd
s ]ds

]
dT

= Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t rvdv 1
σ
(Bj,s)

σ−1wσ
j,sLse(φu(∆u−1)+φd(∆d−1))s]ds

]
dT

= Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−γ

∫ s
t gvdve−ρs 1

σ
(Bj,s)

σ−1wσ
j,se(φu(∆u−1)+φd(∆d−1))s]ds

]
dT

using the Euler equation of the local capitalist. Now we impose some simple assumptions on location
fundamentals. Suppose that:
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a) There exist numbers K1 and k such that

max
j
{Bj,s} ≤ K1eks

for all s.

b) There exists some K2 such that

max
j,k
{

Bj,s

Bk,s
} < K2

for all s.

c) Bj,s > Fs for some weakly increasing surjection Fs : R+ → R+

Together, (b) and (c) can be shown to imply lim
s→∞

e−γ
∫ s

t gvdv = 1. Moreover, using (a) we have

Vj,t(z) ≤ Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−γ

∫ s
t gvdve−ρs 1

σ
(K1eks)σ−1(Nj,tZ̄j,t)

σ
σ−1 e(φu(∆u−1)+φd(∆d−1))s]ds

]
dT

If Nj,t is not vanishing in the limit (which can be shown to be implied by conditions (a)-(c)), then Z̄j,t is
bounded from above. Moreover, Nj,t cannot grow faster than Bj,s in the limit without violating feasibility.
As such, there is some K3 such that

Vj,t(z) ≤ K3Lz
∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−γ

∫ s
t gvdve−ρs 1

σ
(eks)σ−1+ σ

σ−1 e(φu(∆u−1)+φd(∆d−1))s]ds
]

dT

Then it can be directly verified this integral is finite if

δ + ρ > ∑
i∈u,d

φi(∆i − 1) + k(σ− 1 +
σ

σ− 1
)

In words, the value of the firm will be finite if the sum of the discount and death rates is larger than the
average growth rate of firm efficiency and a multiple of the maximum growth in local productivity.

B.2 Proof of Proposition 2

In a stationary equilibrium, the mass of firms is constant, which requires Ne
j,t/Nj,t = δ for all locations.

Given that both the mass of firms and the entry rate are constant, the consumption of local capitalists is also
constant, which requires rj,t = ρ. Lastly, average efficiency Z̄j,t is constant in each location. Using the law of
motion in (14), this implies that Z̄j,t is the same across areas, and given by

Z̄j,t =
δ

Φ
z̄E

Combining this with the results of Proposition 1, we get an expression for payroll across areas, which satis-
fies

wj,tLj,t

N1+ζ
j,t

= δζ(ρ−Φ)(σ− 1)τz̄E−1
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Substituting both of these expression into equation (27), we can write

(27) wj,t = k1B
(1+ζ)(σ−1)

(1+ζ)(σ−1)−1
j,t (Lj,t)

1
(1+ζ)(σ−1)−1

where k1 is combination of model constants. Utility maximization among workers must imply that

L
v̄j
j,t = w

1−v̄j
j,t Aj,t h̄

v̄j
j Ū−1

for all locations, where Ū is the equilibrium level of utility in the stationary economy. Combining this
with(27) and dropping time subscripts, we find that Lj is pinned down as a function of the realizations of
location fundamentals, in

(28) (Lj)

v̄j
1−v̄j
− 1

(1+ζ)(σ−1)−1 = A
1

v̄−1
j h

v̄
v̄−1
j

Ū
1

v̄−1

k1
B

(1+ζ)(σ−1)
(1+ζ)(σ−1)−1
j

Suppose that
v̄j

1−v̄j
> 1

(1+ζ)(σ−1)−1 . Then we can use this expression to write

L
v̄j−

1−v̄j
(1+ζ)(σ−1)−1

j

L
v̄k−

1−v̄k
(1+ζ)(σ−1)−1

k

=
(k1B

(1+ζ)(σ−1)
(1+ζ)(σ−1)−1
j )1−v̄j Aj h̄

v̄j
j

(k1B
(1+ζ)(σ−1)

(1+ζ)(σ−1)−1
j )1−v̄k Ak h̄v̄k

k

and together with the labor market clearing conditioning, this equation pins down unique values for Lj

as a function of all location fundamentals. This is the unique stationary equilibrium. In this equilibrium,
using (27) the conditional log wage function at time 0 in the steady state (before long run fundamentals are
realized) is

E[log(wj)|log(Lj)] =log(k1) +
1

(1 + ζ)(σ− 1)− 1
log(Lj) +

(1 + ζ)(σ− 1)
(1 + ζ)(σ− 1)− 1

E[log(Bj)|log(Lj)]

For average firm size, recall we have
wj,tLj,t

N1+ζ
j,t

= λ

using equation (15). As such we can can write

(1 + ζ)log(Lj,t/Nj,t) ∝ ζlog(Lj,t)− log(wj,t)

from which the result follows immediately.

If
v̄j

1−v̄j
≤ 1

(1+ζ)(σ−1)−1 , it can be shown that utility does not equalize across areas, such that equation (28)
does not hold, and in equilibrium only a single location will be inhabited.

Proof of Lemma 2. To derive the conditional expectation of log(Bj,t) given employment in a location, under
the assumptions in Lemma 2, we make the following observations. Note that the vector

[
log(Lj)

log(Bj)

]
= c

 log( Ū
1

v̄−1
k1

)

0


︸ ︷︷ ︸

≡b

+c

[
1

v̄−1
v̄

v̄−1 σ̃

0 0 1

]
︸ ︷︷ ︸

≡Γ

 log(Aj)

log(hj)

log(Bj)


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where c ≡ (
v̄j

1−v̄j
− 1

(1+ζ)(σ−1)−1 )
−1and σ̃ ≡ (1+ζ)(σ−1)

(1+ζ)(σ−1)−1 , is an affine transformation of a multivariate nor-
mal, and is thus itself multivariate normal, such that[

log(Lj)

log(Bj)

]
∼ N (b + Γµ, ΓΣΓ

′
).

Then the conditional expectation of log(Bj) takes a simple form, and is given by

E[log(Bj,t)|log(Lj,t)] =µB + ΓΣΓ
′
21ΓΣΓ

′−1
11 (log(Lj,t)− clog(

Ū
1

v̄−1

k1
)

− c(
1

v̄− 1
µA +

v̄
v̄− 1

µh + σ̃µB))

Some algebra reveals that, in the case that hj is constant across space,

d
log(Lj,t)

E[log(Bj,t)|log(Lj,t)] =
1

1−v̄ ΣBA + σ̃2Σ2
B

( 1
v̄−1 )

2Σ2
A + σ̃

v̄−1 ΣBA + σ̃2Σ2
B

Linearized Dynamics. Before examining the full case use to prove local stability, I derive the expressions
presented in Section (3.2). First, assume that there are no post-entry dynamics, so that Z̄j,t is always constant
at the mean entry productivity z̄E. Also, under risk neutrality of the local capitalist, we have rj,t = ρ. To
examine the local dynamics around the unique steady state, we combine equation (10) and (13) to get

(NE
j,t)

ζ =
z̄E A

1
v̄j B

1−v̄j
v̄j

j h

στ
N

1
v̄j(σ−1)−1

j,t Z̄
1

v̄j(σ−1)−1

j,t
1

ρ− ζgne
j,t −Φ

Ut

where Ut is the equilibrium level of utility in the economy which ensures labor market clearing across
space.In the text we suppose only one location is out of steady state, and that this location is small, such
that we Ut is close to its steady state value of Ū. Linearizing this expression around the unique steady state
yields

ζ(NE
j,t − N̄E

j ) = δ(
1
v̄j

1
σ− 1

− 1)(Nj,t − N̄j) +
ζ

ρ−Φ
(ṄE

j,t − ˙̄NE
j )

where N̄j , for example, denotes the steady state number of firms in that location. Noting that Ṅj,t =

NE
j,t − δNj,t, we can write this as a second order, homogenous linear differential equation in Nj,t, as

ζ

(ρ + δ)
(N̈j,t − ¨̄Nj)−

ζρ

ρ + δ
(Ṅj,t − ˙̄Nj) + δ(

1
v̄j(σ− 1)

− 1− ζ)(Nj,t − N̄j) = 0

The solution is given by
Nj,t = (Nj,0 − N̄j)ext + N̄j

x = 0.5(ρ±
√

ρ2 + 4δ
(ρ + δ)

ζ
(1 + ζ − 1

v̄j(σ− 1)
)

Given that
(

1
v̄j(σ−1) − 1− ζ

)
< 1, the solution for Nj,t has one stable and one unstable root. Standards

arguments imply that the explosive solution will violate the transversality condition of the local capitalist.
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As such, the solution for this special case has

Nj,t = (Nj,0 − N̄j)ext + N̄j

x = 0.5(ρ−
√

ρ2 + 4δ
(ρ + δ)

ζ
(1 + ζ − 1

v̄j(σ− 1)
)

Now we consider the full case with CRRA utility of the capitalist. From market clearing in the final good,
the consumption of the capitalist in location j must satisfy

Cj,t =
1
σ

Bt(NtZ̄t)
1

σ−1 Lt − τ(NE
j,t)

ζ

where the right hand side is dividends net of entry costs. The linearized Euler equation of the capitalist
requires

Ċt = C̄
1
γ
(rj,t − ρ̄)

Inserting this into the free entry condition gives us

(NE
j,t)

ζ =
z̄E A

1
v̄j B

1−v̄j
v̄j

j h

στ
N

1
v̄j(σ−1)−1

j,t Z̄
1

v̄j(σ−1)−1

j,t
1

γ
Ċj,t
C̄j

+ ρ− ζgne
j,t −Φ

Ut

I linearize this equation ignoring deviations of Z̄j,t and Ūt from their steady state values, and then show
that doing so is valid for economies sufficiently close to the stationary equilibrium in all locations. Doing so
yields

ζ(NE
j,t − N̄E

j ) = δ(
1
v̄j

1
σ− 1

− 1)(Nj,t − N̄j) +
ζ

(ρ−Φ)
(ṄE

j,t − ˙̄NE
j )

− (
N̄E

j

C̄j
)

γ̄

(ρ−Φ)

(
1
v̄j

1
σ− 1

N̄ζ
j (Ṅj,t − N̄j)− τ(NE

j )
ζ−1(ṄE

j,t − Nj,t)

)
(29)

Unlike in the simple case above, the solution to this equation now depends on location, and quantities such
as the steady state entry flow N̄ζ

j . However, it can be verified that in all locations, the solution to equation
(29) Nj,t has one stable and one unstable root.

70



C. SUPPLEMENTARY THEORETICAL MATERIAL

C.1 Firm Values and the Capitalist Portfolio Problem

I here consider the full portfolio problem of the local capitalist. I assume in the paper that there is a popu-
lation of identical local capitalists who own all local firms. These capitalists cannot own firms in any other
location, but can trade shares in local firms among themselves on a competitive market. Below C.2 I also
discuss an alternative formulation with a representative global capitalist who owns all firms in the country.

Since death and improvement are memoryless Poisson processes, firms with the same level of efficiency
will trade for the same price in equilibrium, denoted by Vt(z) (I suppress the dependence on location j in
what follows). The capitalist can also create a portfolio of new shares in firms by hiring labor for entry in
the process defined above. Since they must be indifferent between creating new firms and buying existing
ones in equilibrium, it is sufficient to consider only the strategy of buying existing shares to characterize
their optimal consumption dynamics and the prices of all securities.

The capitalist’s problem is to choose the amount of each security wt(z) and total consumption CK
t to maxi-

mize

max
{CK

t ,vt(z)}

∫ ∞

0
e−ρt (C

K
t )

1−γ

1− γ
dt

subject to

CK
t +

∫
v̇t(z)Vt(z)dz =

∫
vt(z)πt(z)dz

where I restrict vt(z) to be differentiable functions of time. Note that there is no aggregate uncertainty in
this problem. This is because the capitalist can perfectly diversify the idiosyncratic risk of buying individual
firms of productivity z within firm type, since each firm is infinitesimal, and all the state variables of every
location are known with full certainty. To see how the portfolio of the capitalist evolves given the idiosyn-
cratic productivity shocks to each firm, we can take a first order expansion of the value of the portfolio to
get∫

vt(z)Vt+ι(z)dz = (1− ∑
i∈u,d

φiι)
∫

vt(z)Vt(z)dz + ∑
i∈u,d

φiι
∫

vt(z)Vt(∆iz)dz− δι
∫

vt(z)Vt(z)dz + o(ι2)

Note that by adding and subtracting terms we have

∫
vt+ι(z)Vt+ι(z)dz =

∫
vt(z)Vt+ι(z)dz−

∫
(vt+ι(z)−vt(z))Vt+ι(z)dz

=
∫

vt(z)Vt(z)dz +
∫

vt(z)(Vt+ι(z)−Vt(z))dz +
∫
(vt+ι(z)−vt(z))Vt+ι(z)dz

Combining these two equations and taking limits gives us

lim
ι→0

∫
(vt+ι(z)Vt+ι(z)−vt(z)Vt(z))

ι
dz = ∑

i∈u,d

∫
vt(z)φi(Vt(∆iz)−Vt(z))dz +

∫
vt(z)V̇t(z)dz

+
∫

v̇t(z)Vt(z)dz− δι
∫

vt(z)Vt(z)dz
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Now assuming all firm values are differentiable functions of time, the limit on the left hand side exists.
Substitute this equation into the flow budget constraint to get

CK
t +

d
∫

vt(z)Vt(z)dz
dt

dz =
∫

vt(πt + V̇t(z) + φ(Vt(∆z)−Vt(z))− δVt(z))dz

which equates consumption and the change in total wealth to the dividends and appreciation of the optimal
bundle. Define the return of an asset as

(30)
πt + V̇t(z) + ∑i∈u,d φi(Vt(∆iz)−Vt(z))− δVt(z)

Vt(z)
≡ rt(z) = rt

where the second equality follows by no arbitrage: market clearing requires every type of firm to yield the
same instantaneous return. Note that since all firms must be held by someone in equilibrium, this will be
the return of all firms in the portfolio, and hence equation (30) prices each firm. Using this, we can write the
budget constraint as

CK
t +

d
∫

wt(z)Vt(z)dz
dt

= rt

∫
wtVt(z)

Then define total wealth of the chosen optimal mix of securities as W∗t ≡
∫

wt(z)Vt(z)dz. The problem of
the capitalist then is reduced to

max
{CK

t ,Wt}

∫ ∞

0
e−ρt (C

K
t )

1−γ

1− γ
dt

CK
t + Ẇ∗t = rtW∗t

This is a simple optimal control problem, the solution of which is characterized by the Euler equation

gCK

t =
1
γ
(rt − ρ)

and the transversality condition

lim
t→∞

[
W∗t exp(−

∫ t

0
rsds)

]
= 0

Before we turn to the equilibrium determination of rt, we can alternatively ask how a consumer would
value a firm with productivity z, given they had chosen the optimal portfolio with an instantaneous return
rt. Since all capitalists are identical, this must be the market price of the security. The return of the market
portfolio is risk-free, since there is no aggregate uncertainty and there is a continuum of firms who face
idiosyncratic risk, uncorrelated with the return of the market. As such, the price of a firm is simply the
present value of expected dividends, given by

Vt(z) = E

∫ T

t
e−
∫ s

t ruduπs(zs)ds

where T is a stochastic stopping time that occurs due to creative destruction and exogenous death, and zs

evolves according to the Poisson process described for a given zt. Given this, we can explicitly include the
density for the stopping time, given by

Vt(z) = Et

∫ ∞

t
δe−δ(T−t)

[∫ T

t
e−
∫ s

t ruduπs(zs)ds
]

dT
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where the expectation is over all paths of zs given by the innovation process. Write this as

Vt(z) = Et

∫ ∞

t+ι
δe−δ(T−t)

[∫ T

t+ι
e−
∫ s

t ruduπs(zs)ds
]

dT

+Et

∫ t+ι

t
e−
∫ s

t ruduπs(zs)ds

= e−διe−
∫ t+ι

t ruduEtVt+ι(zt+ι) + Et

∫ t+ι

t
e−
∫ s

t ruduπs(zs)ds

We can evaluate the first expectation as using the the properties of the Poisson process to get

EtVt+ι(zt+ι) =
∞

∑
x=0

(ιφd)
xe−φd ι

x!

∞

∑
y=0

(ιφu)ye−φu ι

y!
Vt+ι(DyDxzt)

where Dx takes on values of {1, ∆u, ∆2
u...} and similarly for Dy. Write this as

EtVt+ι(zt+ι) = e−φu ι−φd ι(ιφuVt+ι(∆uzt) + ιφdVt+ι(∆dzt) + Vt+ι(zt) + o(ι2))

= (1− φuι− φdι)(ι ∑
i∈u,d

φiVt+ι(∆izt) + Vt+ι(zt)) + o(ι2)

= ι ∑
i∈u,d

φiVt+ι(∆izt) + (1− φuι− φdι)Vt+ι(zt) + o(ι2)

Using another Taylor expansion, write

e−διe−
∫ t+ι

t ruduEtVt+ι(zt+ι) = ∑
i∈u,d

φiVt+ι(∆izt) + (1− φuι− φdι)Vt+ι(zt)− ι(δ + rt)Vt+ι(zt) + o(ι2)

as ι becomes small. Then we can write

rtVt+ι(z) = πt(z) +
Vt+ι(z)−Vt(z)

ι
+ ∑

i∈u,d
φi(Vt+ι(∆izt)−Vt+ι(z))− δVt+ι(z) + o(ι2)

and take the limit to get the HJB.

I now discuss determination of the equilibrium interest rate on the capitalist portfolio. This must be so such
that the consumption of a representative capitalist who owns all existing firms and invests in new firms is
consistent with market clearing in equilibrium. Given that capitalists may not lend across locations, market
clearing for the final good in a location requires that the consumption of the representative capitalist be
given by

(31) CK
t =

1
σ

Bt(NtZ̄t)
1

σ−1 Lt − τ(NE
j )

ζ

where the first term on the RHS is the net final good production (after payment of wages) and the second is
the amount of the final good used in the creation of new firms. Then using the Euler equation, we have the
interest rate determined by

rt = ρ + γgCk
t
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We can replace this in the free entry condition to eliminate rt, yielding

(32) ρ + γgCk
t =

z̄E

σ− 1
wtLt

NtZ̄t
+ ζgne

t + Φ

One last equilibrium equation determines the evolution of the mass of firms, which yields

(33) Ṅj,t = NE
j,t − δNj,t

For a given amount of labor in a location, using equation (33), in equations (32) and (31) together with
equation (14) give a coupled system of non-linear ODE’s in three variables {Nj,t, Zj,t, Ṅjt} ∈ R3J . Two sets
of initial conditions are determined by N0 and Z0. The third boundary condition for each location comes
from the transversality condition of the representative local capitalist, and requires

lim
t→∞

e−
∫ t

0 rj,sdsNj,tτ(NE
j,t)

ζ
Zj,t

z̄E = 0

C.2 The Social Planner’s Problem

The social planner’s problem provides additional insight into the core inefficiency present in this model.
Ignoring the utility of the landlords, the social planner’s problem is to

max
Lj,t ,Hj,t ,CA

j,t ,N
E
j,t ,C

K
t

θ
∫

(UW
t )1−γ

1− γ
e−ρtdt + (1− θ)

∫
(CK

t )
1−γ

1− γ
e−ρtdt

subject to

UW
t =

J

∑
j=1

Lj,t(CW
j,t )

α H1−α
j,t Aj,t

Lj,t(CW
j,t ) + CK

j,t = Bj,t(Nj,tZ̄j,t)
1

σ−1 Lj,t − (NE
j,t)

1
1−ζ̃ τ − (

Lj,tHj,t

h
vj
h,t

)
1

1−vj

CW
j,t , CK

j,t ≥ 0
J

∑
j=1

Lj,t = L̄

Ṅj,t = NE
j,t − δNj,t

˙̄Zj,t = Z̄t ∑
i∈{u,d}

φi(∆i − 1) + NE
j,t(z̄

E − Z̄j,t)/Nj,t

where θ is a Pareto weight on the utility of the workers. That is, the social planner is optimizing a weighted
sum of the utility of workers and capitalists by choosing consumption, housing and investment decision
across all j locations, as well as optimizing the locations of the workers in the economy. The second con-
straint is a constraint on the amount of final good used in a location, which must be equal to the sum of
consumption by workers and capitalists, as well as that used for creation of new firms and to provide hous-
ing services. The first term on the RHS is simply the aggregate production function for the final good, taking
into account optimal aggregation over intermediate varieties.
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Note that the social planner respects the same location-by-location resource constraint here as in the com-
petitive model. There I assumed that capitalists were not able to borrow and lend to one another across
areas. Here I assume that the social planner respects this constraint, and cannot transfer the final good
across areas; what is produced in an area must be used in that area. This also ensures that the capitalist
cannot have negative consumption (CK

j,t ≥ 0). In the model corresponding to a single global capitalist who
can invest across all areas, this constraint would be relaxed. Specifically, the J location resource constraints
above become a single constraint on the total amount of the final good in the economy.

There are two dynamics constraints that the social planner must respect, in the final two constraints of
the problem. The mass of firms evolves according to investment in the mass of entrants, and shrinks at a
constant rate due to the death of incumbents firms. Second, as in the competitive economy, investment in
new firms will affect average efficiency in a location.

First note that we can solve for the amount of housing services produced in each location without solving the
full dynamic problem, as this only involves a static tradeoff within periods. Doing so reveals that housing
services for workers in each locations satisfy

Hj,t = (
hj,t

Lj,t
)vj(Cj,t

(1− α)(1− vj)

α
)1−vj

This can be directly verified to be the same allocation between housing and consumption as occurs in the
competitive equilibrium. There is no inefficiency in the housing market given local populations. As such,
we can rewrite the problem taking this optimal choice into account as

max
Lj,t ,CA

j,t ,N
E
j,t

θ
∫

(UW
t )1−γ

1− γ
e−ρtdt + (1− θ)

∫
(CK

t )
1−γ

1− γ
e−ρtdt

subject to

UW
t =

J

∑
j=1

L
1−vj(1−α)

j,t (CW
j,t )

α+(1−α)(1−vj)Aj,t(hj,t)
vj(1−α)(

(1− α)(1− vj)

α
)1−vj

Lj,t(CW
j,t )(1 +

(1− α)(1− vj)

α
) + CK

j,t = Bj,t(Nj,tZ̄j,t)
1

σ−1 Lj,t − (NE
j,t)

1
1−ζ̃

CW
j,t , CK

j,t ≥ 0
J

∑
j=1

Lj,t = L̄

Ṅj,t = NE
j,t − δNj,t

˙̄Zj,t = Z̄t ∑
i∈{u,d}

φi(∆i − 1) + NE
j,t(z̄

E − Z̄j,t)/Nj,t

To examine the core inefficiency, it suffices to consider the long-run steady state of the planners problem,
and abstract from the transitional dynamics. Standard optimal control techniques, as well as some algebra,
reveal that in the long run steady state, optimal entry is given by

(
NE∗

j,t

)ζ
=

z̄EBj,t(Z̄j,t)
1

σ−1 N
1

σ−1
j,t Lj,t

(σ− 1)τZ̄j,t

1
ρ−Φ
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Note that since
wj,tLj,t =

σ− 1
σ

Bj,t(Z̄j,t)
1

σ−1 N
1

σ−1
j,t Lj,t

in the competitive economy, we instead had from Proposition 1 that

(
NE

j,t

)ζ
=

z̄EBj,t(Z̄j,t)
1

σ−1 N
1

σ−1
j,t Lj,t

στZ̄j,t

1
ρ−Φ

Examining these two expressions, it is clear that there is a single difference between the competitive outcome
and the social optimum, and it turns out to be no different than the standard monopolistic competition
inefficiency in the long-run steady state. The intermediates firm does not take into account its effect on
overall variety and raising local productivity, which leads to underinvestment in the number of firms in
each location by a factor of σ

σ−1 .

This factor is proportional across locations. However, because land supply elasticities are heterogenous
across space in the general case, this will imply misallocation of workers in the competitive equilibrium. A
simple location-neutral subsidy to entry can entirely correct the inefficiency, obviating the need for place-
based policies.
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D. EXTENSIONS

D.1 The Introduction of Costly Regional Trade

Another stark assumption made in the paper is that intermediate varieties are not traded across space. I
here explore the implications of allowing a degree of tradability in these varieties. Enriching the model in
this dimension allows for two key enhancements:

a) Downward-sloping labor demand: The production function of the final good employed in the main
paper implies that labor demand is infinitely elastic. As such, the entire effect of population move-
ments on wages are long-run responses through firm creation. In the short run, when a place receives
a population inflow, wages will not fall in that location. The local economy simply absorbs the influx
of labor without a decrease in marginal product, due to the linearity embedded in (6). Regional trade,
in contrast, restores a traditional downward-sloping demand for labor.

b) Spatial linkages and propagation: In the main model of the paper, the only links between markets
come from labor market clearing. There is no meaningful notion of distance, and all locations are
affected symmetrically by a shock to one location. Introducing trade linkages allows areas to be
affected by changes in their trading partners depending on the volume that they trade.

Suppose each variety can be traded across locations subject to iceberg trade frictions τjk between locations j
and k. Each variety is unique, and varieties from all locations can be aggregated into the final good according
to

Yj,t =

(
J

∑
k

∫ Nk,t

0
y

σ−1
σ

kj,t (ik)dik

) σ
σ−1

,

where ykj,t(i) is the amount of good i shipped from k to j. Given that varieties will sell at different prices in
different locations, the price of the final good is no longer the same everywhere, and I will denote this price
level by Pj,t. It can be shown to be given by

(34) P1−σ
jtt

= σ̃ ∑
k

Bσ−1
k,t Nk,tZ̄k,t(wk,tτkj)

1−σ

where σ̃ = ( σ
σ−1 )

1−σ. I will also impose that balanced trade holds across space. This is equivalent to
maintaining the assumption that the local capitalists may not borrow or lend across space, and can only
accumulate assets via holdings of local firms. For trade balance to hold, the sales of all intermediate varieties
from location j to all J locations must equal the income flowing to wages and profits. This requires

(35) wj,tLj,t +
∫ Nj,t

0
πj,t(ij)dij = σ̃Bσ−1

j,t Nj,tZ̄j,t ∑
k
(wjτjk)

1−σPσ−1
k Xk

where Xk is total expenditure in region j. It is known that if trade costs are symmetric (see e.g. Allen and
Arkolakis (2014); Allen et al. (2019)), the two systems of equations in can be combined into a single set of
labor market clearing conditions, which in this context are given by:

wσ
j,tLj,t = (

σ

σ− 1
)−σBσ−1

j,t Nj,tZ̄j,t ∑
k
(τjk)Bσ−1

k,t Nk,tZ̄k,t(wk,t)
1−σ
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Given the amount of labor Lj,t in a location, a normalization for the wage level and values for location state
variables, this can be solved for a unique value for the wage in each location. This expression allows as to
see how introducing free trade across areas introduces decreasing returns to local labor supply. Consider the
extreme case, where trade in intermediate varieties becomes completely free across space, such that τj,k → 1
for all pairs {j, k}. In that case, the price of the final good becomes the same everywhere. As such, we can
normalize

∑
k

Bσ−1
k,t Nk,tZ̄k,t(wk,t)

1−σ = 1

which then implies that the local wage satisfies

(36) wj,t =
σ− 1

σ

(
Bσ−1

j,t Nj,tZ̄j,t

) 1
σ L−

1
σ

Comparing this to the expression in the baseline economy in 6, we notice two differences. First, the scale
elasticity in the number of firms is smaller. Second, the inverse elasticity of labor demand is given by σ. This
accords with intuition- if local varieties are less substitutable with one another (indexed by a lower value
for σ), demand for labor in an area will be less responsive to the changes in the prevailing local wage.

In this extreme case, the conclusions of the paper do not hold. The decreasing returns to local labor supply
induced by free trade in varieties swamps the increasing returns to scale induced by the the specialization
effect. To see this, it can be shown that in this economy, we still have equation (10) holding, which implies
that in the stationary equilibrium we have

wj,tLj,t

N1+ζ
j,t

= (δ)ζ+1(σ− 1)τΦ(ρ−Φ) ≡ λ

Inserting this in to the expression for wages in (36), we find

wj,t ∝
(

Bσ−1
j,t Z̄j,t

) (1+ζ)
(1+ζ)σ−1 L−

ζ
(1+ζ)σ−1

So that there is now a negative scale elasticity in the size of the local population. Of course, in spatial
equilibrium it may well be the case that larger locations still pay higher wages, but this will come from
spatial indifference and the local productivity Bj,t. There is no longer an endogenous agglomeration effect
where larger populations will raise wages through the increasing returns to scale embedded in firm creation.

Which effect dominates is a quantitative question, given that the true economy will lie somewhere between
the prohibitive trade costs in the main model, and completely free trade in varieties here.
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