INTERNATIONAL TRADE - ECON 245
FABIAN ECKERT
SPATIAL EQUILIBRIUM

INTRODUCTION

- The workhorse spatial economics framework is based on the papers of Rosen (1979) and Roback (1982), simply known as "Rosen-Roback"
- Many many applications and tests over the years
, Central insight:
, Labor mobility across location leads to a spatial equilibrium whereby high wages are offset by high prices, and higher real wages by negative amenities, i.e., such that overall utility equalizes across space

STATIC LOCATION DECISIONS

ROSEN-ROBACK

SETUP

- There is a set S of discrete locations indexed by i
, Market structure is perfect competition
All locations produce a single homogeneous good that is freely traded
- Workers can move freely across space
, Locations differ in:
- Amenities, U_{i}
- Productivities, A_{i}

PRODUCTION

- All firms produce a homogeneous good
- Firms in each location produce with constant returns to scale
- Technology is labor-only and productivity denoted $A_{i}: y_{i}=A_{i} L_{i}$
- We allow for the possibilities of production externalities:

$$
A_{i}=\bar{A}_{i} L_{i}^{\alpha} \quad \text { where } \quad \alpha \geq 0
$$

where \bar{A}_{i} is the fundamental part of productivity
(With perfect competition the price is equal to marginal product: $p=w_{i} / A_{i}$

CONSUMERS

- Consumers spend all their money on the homogeneous good
- The consumer also enjoys the location specific amenity U_{i} so that their total utility in location i is given by

$$
W_{i}=U_{i} \frac{w_{i}}{p_{i}}
$$

- We also allow for amenity spillovers:

$$
U_{i}=\bar{U}_{i} L_{i}^{-\beta} \quad \text { where } \beta \geq 0
$$

- Consumers do not internalize their effect on productivties/amenities

EQUILIBRIUM

- The good is homogeneous and freely traded so its price has to be the same everywhere
- We choose its price as the numeraire $p=1$
- This implies that $w_{i}=A_{i}$
- Plugging this into the utility function we solve for the indirect utility:

$$
W_{i}=A_{i} U_{i}=\bar{A}_{i} \bar{u}_{i} L_{i}^{\alpha-\beta}
$$

- Spatial equilibrium implies that workers keep migrating until $W=W_{i}$

EQUILIBRIUM

$$
W_{i}=A_{i} U_{i}=\bar{A}_{i} \bar{u}_{i} L_{i}^{\alpha-\beta}
$$

- Critical assumption: congestion forces dominate agglomeration forces
> Need this in all spatial models
(In Rosen-Roback it translates into an easy parameter restriction: $\beta>\alpha$
Implies: no uninhabited locations unless $\bar{U}_{i}=0$ or $\bar{A}_{i}=0$, as $L_{i} \rightarrow 0, W_{i} \rightarrow \infty$
- But we need a final equation to solve for the value W

EQUILIBRIUM

, First rewrite the spatial equilibrium condition as follows:

$$
L_{i}=\left(\frac{W}{\bar{A}_{i} \bar{U}_{i}}\right)^{\frac{1}{\alpha-\beta}}
$$

- The final quation is then population adding-up constraint:

$$
\bar{L}=\sum_{i} L_{i}=\sum_{i}\left(\frac{W}{\bar{A}_{i} \bar{U}_{i}}\right)^{\frac{1}{\alpha-\beta}} \Rightarrow W=\left[\bar{L}^{-1}\left(\sum_{i}\left(\bar{A} \bar{U}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}\right)\right]^{\beta-\alpha}
$$

- Using this we can solve for the distribution of workers in terms of parameters:

$$
L_{i}=\frac{\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}}{\sum_{i}\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}} \bar{L} \Rightarrow \frac{L_{i}}{\bar{L}} \equiv \pi_{i}=\frac{\left(\overline{A_{i}} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}}{\sum_{i}\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}}
$$

EQUILIBRIUM

- The equilibrium allocation is then pinned down by two equations
- Labor+Goods market clearing:

$$
w_{i}=A i
$$

- Follows from firm optimization and worker optimal consumption decision
, Spatial Equilibrium:

$$
L_{i}=\frac{\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}}{\sum_{i}\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}} \bar{L} \equiv \pi_{i} \bar{L}
$$

- Follows from optimal location decisions

EQUILIBRIUM

, Some notes:

- The population and wage distributions fully characterizes the equilibrium
- In spatial equilibrium, there are nominal wage differences across space exist
- In spatial equilibrium, real wage differences across space reflect amenity differences
- In spatial equilibrium any local improvement (productivity or amenities) leads to a welfare increase for all workers everywhere
- Individual workers would be willing to change location immediately if asked

CALIBRATING THIS MODEL

- In spatial models there are two types of objects to calibrate:
- Parameters, e.g., β, α
- Location Fundamentals, e.g., \bar{A}_{i}, \bar{U}_{i}
- To identify parameters we require exogenous variation or a method of moments.
- Location fundamentals inferred as "structural residuals" conditional on parameters.
- This yields the tight connection between data and model in these models

CALIBRATING THIS MODEL

, Suppose we know the deep parameters α and β

- We can then exploit equilibrium relationships to identify fundamentals
- Step 1:
, We know $A_{i}=w_{i}$, therefore $\bar{A}_{i}=w_{i} L_{i}^{-\alpha}($ RHS $=$ Data! $)$
- Step 2:

We use $L_{i} / \bar{L}=\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}\left[\sum_{i}\left(\bar{A}_{i} \bar{U}_{i}\right)^{\frac{1}{\beta-\alpha}}\right]^{-1}$, with inferred \bar{A}_{i} and population shares data to infer \bar{U}_{i}

CALIBRATING THIS MODEL

- The first two steps highlights: the model can match data on wages and population shares exactly, for any choice of deep parameters α, β.
- This simple model does not provide enough restrictions to estimate α, β but in general this is possible using IV regression implied by the model, e.g.:

$$
\log \left(w_{i}\right)=\alpha \log \left(L_{i}\right)+\log \left(\bar{A}_{i}\right) \Rightarrow \Delta \log \left(w_{i}\right)=\alpha \Delta \log \left(L_{i}\right)+\Delta \log \left(\bar{A}_{i}\right)
$$

- To identify α need a population inflow that is unrelated to growth in local fundamental productivity, e.g., a population expulsion somewhere else, see Peters 2020.

WRITING THIS MODEL IN CHANGES (LIKE JONES 1965)

, Write the wage equation in changes:

$$
\hat{w}_{i}=\hat{A}_{i}
$$

- Write the population share equation in changes:

$$
\hat{\pi}_{i}=\frac{\left(\hat{\bar{A}}_{i} \hat{U}_{i}\right)^{\frac{1}{p-\alpha}}}{\sum_{i} \pi_{i}\left(\hat{A}_{i} \hat{U}_{i} \hat{U}^{\frac{1}{\alpha-\alpha}}\right.}
$$

- To solve for the impact of population shares and wages to a 10% increase in amenities in location i, just plug in $\hat{\bar{U}}_{i}=1.1$ and $\hat{\bar{A}}_{i}=1$ alongside data for population shares in original equilibrium, π_{i}

ALLEN ARKOLAKIS

SETUP

- Set of discrete location $i \in S$
- Locations differ in local amenities U_{i} and productivities A_{i}
- These could potentially be a function of local population with some elasticity
- Total mass of workers \bar{L} in the economy, choose locations to maximize utility
- Armington structure: each location produces its own variety, perfect competition, constant returns to scale
- Iceberg trade costs between locations

CONSUMERS

- Consumers have CES preferences over all regional varieties. Total utility:

$$
V_{j}=\left(\sum_{i \in S} q_{i j}^{\frac{\sigma-1}{1}}\right)^{\frac{\sigma}{\sigma-1}} \times U_{j}
$$

- This implies indirect utility in location j is given by:

$$
W_{j}=\frac{w_{j}}{P_{j}} U_{j}
$$

- where P_{j} is the standard CES price index.
- Consumer choose locations so that $i^{\star}=\arg \max _{i}\left\{W_{i}\right\}$

PRODUCTION

- Production is as before in the Armington model: labor only, CRS:

$$
y_{i}=A_{i} L_{i}
$$

EQUILIBRIUM

- We can solve the equilibrium using the following three conditions:
- 1. Goods+Labor market clearing yields:

$$
w_{i} L_{i}=\sum_{j} \lambda_{i j} w_{j} L_{j}
$$

1 2. Spatial Equilibrium: there exists a W such that for all $i \in S$ such that $L_{i}>0$, $W_{i}=W$ and for all $i \in S$ such that $L_{i}=0, W_{i} \leq W$.

- 3. Population Adding up: local labor supply sums to total world population

$$
\sum_{i \in S} L_{i}=\bar{L}
$$

INFERRING REGIONAL FUNDAMENTALS

EQUILIBRIUM

- We can write the goods+labor market clearing equation as follows:

$$
w_{i}^{\sigma} L_{i}=W^{1-\sigma} \sum_{j \in S} \tau_{i j}^{1-\sigma} A_{i}^{\sigma-1} U_{j}^{\sigma-1} w_{j}^{\sigma} L_{j}
$$

- where we used the spatial equilibrium condition that $W_{i}=W$
- From the spatial equilibrium equation itself we get:

$$
w_{i}^{1-\sigma}=W^{1-\sigma} \sum_{j \in S} \tau_{j i}^{1-\sigma} U_{i}^{1-\sigma} A_{j}^{\sigma-1} w_{j}^{1-\sigma}
$$

, These are two linear equations in $w_{i}^{\sigma} L_{i}$ and $w_{i}^{1-\sigma}$

EQUILIBRIUM

, We can write this system as follows:

$$
x=\lambda A x \quad y=\lambda A^{T} y
$$

, where $x_{i}=w_{i}^{\sigma} L_{i}$ and $y_{i}=w_{i}^{\sigma}$ and $\lambda=W^{1-\sigma}$.

- As long as $A_{i j}>0$ Perron-Frobenius theorem guarantees there exist strictly positive, toscale vectors x and y corresponding to the largest eigenvalue λ
- Since kernels of the system are transposes, eigenvalues are the same.
- Scale of wages is arbitrary (pinned down by choice of numeraire), scale of population is pinned down by the world population constraint

EQUILIBRIUM

-Why was this easy? There were enough dispersion forces in the system!

- Armington assumption acts like dispersion force, since wages will go to infinity if no one is in a location.
- Absence of agglomeration forces in the basic Armington model
- Balance of dispersion and agglomeration forces sufficiently tilted toward dispersion!
- More difficult to prove existence in model with external effects in productivities and/or amenities: need restrictions on the strength of agglomeration forces.

FROM ALLEN ARKOLAKIS (2014): PROPERTIES OF MODEL WITH SPILLOVERS

MORE LABOR SUPPLY MODULES

FREE MOBILITY

, So far we saw the two easiest of labor supply modules:
(No Mobility: Labor supply in each location is fixed to a constant $L_{i}=\bar{L}_{i}$

- Free Mobility: Labor supply in each location adjusts so that indirect utilities are equalized across locations, $W_{i}=W \forall i$ s.t. $L_{i}>0$
> Next we look at how to generate the in-between cases: local labor supply responds to increases in local wages, rents, or fundamentals but less than one-forone.
- We say local labor supply is upward sloping (in wages)

FRÉCHET SHOCKS

- We introduce an idiosyncratic element into agent js utility:

$$
W_{i}^{j}=f\left(w_{i}, P_{i}, U_{i}\right) \xi_{i}^{j}
$$

, We assume that agent j receives an iid idiosyncratic amenity draw ξ_{i}^{j} for each location i before making their decision.

- Agent j hence solves the following problem:

$$
i^{\star}=\max _{i}\left\{f\left(w_{1}, P_{1}, U_{1}\right) \xi_{1}^{j}, \ldots, f\left(w_{S}, P_{S}, U_{S}\right) \xi_{S}^{j}\right\}
$$

FRÉCHET SHOCKS

- But this looks a lot like the problem we saw in Eaton and Kortum (2002): discrete choice problem with stochastic element!
, Let's assume that

$$
F\left(\xi_{i}^{j}\right)=\exp \left(-z^{-\theta}\right) \quad \theta>1
$$

- This gives the following analytic expression for the fraction of workers that choose to live in i :

$$
\frac{L_{i}}{\bar{L}}=\pi_{i}=\frac{\left(f\left(w_{i}, P_{i}, U_{i}\right)\right)^{\theta}}{\sum_{i}\left(f\left(w_{i}, P_{i}, U_{i}\right)\right)^{\theta}}
$$

FRÉCHET SHOCKS: ALTERNATIVE

- Suppose the Frechet distributions for each destination has a non-unitary mean:

$$
F\left(\xi_{i}^{j}\right)=\exp \left(-T_{i} z^{-\theta}\right) \quad \theta>1
$$

- This gives the following analytic expression for the fraction of workers that choose to live in i :

$$
\frac{L_{i}}{\bar{L}}=\pi_{i}=\frac{T_{i}\left(f\left(w_{i}, P_{i}, U_{i}\right)\right)^{\theta}}{\sum_{i} T_{i}\left(f\left(w_{i}, P_{i}, U_{i}\right)\right)^{\theta}}
$$

- But then the T_{i} is the "mean amenity" and isomorphic to U_{i}, so drop U_{i}.
- Alternative ways to think about amenities

FRÉCHET SHOCKS: LABOR SUPPLY ELASTICTTY

, Consider embedding this into the Armington model above.
, Then $f(\cdot)=\left(w_{i} / P_{i}\right) U_{i}$

- It is then easy to see that the labor supply elasticity in location i is:

$$
\frac{w_{i}}{\pi_{i}} \frac{\partial \pi_{i}}{\partial w_{i}}=\left(1-\pi_{i}\right) \theta
$$

, where we assumed that $\partial P_{i} / \partial w_{i}=0$.
, So θ now governs local labor supply, if its large local employment responds strongly to local increases in the wage

FRÉCHET SHOCKS: UTILITY ACROSS SPACE

- Workers are now no longer indifferent across regions!

D However, ex-ante, before they receive their idiosyncratic shocks they all have the same expected value:

$$
\bar{W}=\left(\sum_{i}\left(f\left(w_{i}, P_{i}, U_{i}\right)\right)^{\theta}\right)^{\frac{1}{\theta}}
$$

Ex-post, they individuals are not indifferent.
D However: distribution of utilities within each location is the same:

- More productive regions have more workers, and lower average idiosyncratic utility draws!
(There is now a marginal worker, that will move if something changes

LIMIT CASES: PREFERENCE SHOCKS AS MIGRATION FRICTIONS

- As the dispersion of idiosyncratic preference shocks $(1 / \theta)$ goes to infinity:

$$
\lim _{\theta \rightarrow 0} \pi_{i}=\lim _{\theta \rightarrow 0} \frac{T_{i}\left(f\left(w_{i}, P_{i}\right)\right)^{\theta}}{\sum_{i} T_{i}\left(f\left(w_{i}, P_{i}\right)\right)^{\theta}}=\frac{T_{i}}{\sum_{i} T_{i}}
$$

- Its all about preferences in the limit, wages and prices play no role!
- Like migration frictions: prevent closing of real wage gaps across space!
- As dispersion goes to zero, agents agree only care about differences in real wages, location with highest real wage gets all workers!
- Like free mobility case: in equilibrium no real wage gaps across space

GUMBEL SHOCKS

- Sometimes it is more convenient to have the idiosyncratic preferences enter linearly:

$$
W_{i}^{j}=f\left(w_{i}, P_{i}, U_{i}\right)+\xi_{i}^{j}
$$

- Assume ξ_{i}^{j} is drawn iid from a Gumbel distribution $F\left(\xi_{i}^{j}\right)=\exp \{-\exp \{-\xi \theta\}\}$
- Then going again to math similar to Eaton and Kortum (2002):

$$
\frac{L_{i}}{\bar{L}}=\pi_{i}=\frac{\left.\exp \left(\theta f\left(w_{i}, P_{i}, U_{i}\right)\right)\right)}{\left.\sum_{i} \exp \left(\theta f\left(w_{i}, P_{i}, U_{i}\right)\right)\right)}
$$

