INTERNATIONAL TRADE - ECON 245
FABIAN ECKERT

## INTRODUCTION

- Another famous model with heterogeneous firms is Eaton and Kortum (2002).
- Different from Melitz (2003) [IRS+MC] EK features CRS+perfect competition
- The model is a probabilistic generalization of the Ricardian model by DFS to capture competing forces:
- Comparative advantage differences promote trade
, Geographic barriers (transport costs, tariffs etc) diminish trade
- The probabilistic formulation itself is a hugely influential technical contribution


## MODEL SETUP

- Countries are indexed by $i \in 1, \ldots, N$
> Continuum of goods $\omega \in[0,1]$
- Labor-only production.

Labor mobile across industries, but immobile across countries

- Constant Returns to Scale production with $z_{i}(\omega)$ productivity for good $\omega$
> The usual iceberg trade costs $\tau_{i j}$ with triangle inequality holding $\left(\tau_{i k} \tau_{k j}>\tau_{i j}\right)$


## PREFERENCES

- Consumers have CES preferences over the set of industries $\omega \in[0,1]$
- Goods of each industries are homogeneous across countries
- Market structure is perfect competition, so prices are given by marginal cost:

$$
p_{i j}(\omega)=\frac{w_{i}}{z_{i}(\omega)} \tau_{i j}
$$

- Consumer expenditure minimization implies that they buy from the country offering the lowest price. So the price paid by consumers in destination $j$ :

$$
p_{j}(\omega)=\min _{i=1, \ldots, N}\left\{p_{i j}(\omega)\right\}
$$

## TECHNOLOGY

- Country $i$ 's efficiency in producing good $\omega$ is the realization of a random variable (drawn iid for each good and country) $Z_{i}$ drawn from $F_{i}(z)=\operatorname{Pr}\left(Z_{i} \leq z\right)$
- By LLN $F_{i}(z)$ is fraction of goods for which country $i$ has efficiency below $z$
- Eaton and Kortum choose $F$ to be the following Fréchet distribution:

$$
F_{i}(z)=\exp \left(-T_{i} z^{-\theta}\right) \quad T_{i}>0 \quad \theta>1
$$

, The parameter $T_{i}$ captures absolute advantage of country $i$
, The parameter $\theta$ is a (inverse) measure of the degree of comparative advantage

## ASIDE: A USEFUL PROPERTY OF EXTREME VALUE DISTRIBUTIONS

Distributions in the class of extreme value distributions are "max and min stable"

- E.g.: Fréchet, Pareto, Gumbel, multivariate version of those
( These distributions have a key property useful to economists:
- E.g.: The minimum or maximum of a list of iid-Fréchet variables again itself follows a Fréchet distribution:

$$
X_{\min }=\min \left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \quad \text { where } \quad x_{i} \sim \text { Frechet then } X_{\min } \sim \text { Frechet }
$$

## PRICES

- The origin country $i$ presents a destination $j$ with a distribution of prices

$$
\begin{aligned}
& G_{i j}(p)=\operatorname{Pr}\left[p_{j} \leq p\right]=1-F_{i}\left(w_{i} \tau_{i j} / p\right): \\
& G_{i j}(p)=1-\exp \left(-\left[T_{i}\left(w_{i} \tau_{i j}\right)^{-\theta}\right] p^{\theta}\right)
\end{aligned}
$$

- The distribution of the minimum of prices (i.e. actual consumer prices) in destination $j_{,} G_{j}=\operatorname{Pr}\left[P_{j} \leq p\right]$ is

$$
G_{j}(p)=1-\prod_{i=1}^{N}\left[1-G_{i j}(p)\right]
$$

- Substituting yields

$$
G_{j}(p)=1-\exp \left(-\Phi_{j} p^{\theta}\right) \quad \text { where } \quad \Phi_{j} \equiv \sum_{i}^{N} T_{i}\left(w_{i} \tau_{i j}\right)^{-\theta}
$$

## COROLLARIES OF THE FRÉCHET ASSUMPTION

- The probability country $i$ provides a given good at the lowest price to $j$ is

$$
\operatorname{Pr}\left[p_{i j} \leq \min _{k \neq i}\left\{P_{k j}\right\} \equiv \pi_{i j}=\frac{T_{i}\left(w_{i} \tau_{i j}\right)^{-\theta}}{\Phi_{i}}=\frac{T_{i}\left(w_{i} \tau_{i j}\right)^{-\theta}}{\sum_{k} T_{k}\left(w_{k} \tau_{k j}\right)^{-\theta}}\right.
$$

- by the LLN this is also the fraction of goods $j$ buys from $i$
- The price of a good that country $n$ actually buys from any country $i$ also has the distribution $G_{i}(p)$
- Source which is more productive/closer/cheaper sells more goods to the point where the distribution of prices is the same as for every other source!


## COROLLARIES OF THE FRÉCHET ASSUMPTION

- With CES utility and a Fréchet distribution for the prices actually paid by consumers, the price index takes the following form:

$$
P_{j}=\Gamma \Phi_{j}^{-1 / \theta} \text { where } \Gamma \equiv\left[\Gamma\left(\frac{\theta+1-\sigma}{\theta}\right)\right]^{\frac{1}{1-\sigma}}
$$

- Eaton+Kortum derive this using moment generating function
, Sketch: $E\left(e^{t x}\right)=\Phi_{j}^{\frac{1}{\theta}} \Gamma\left(1-\frac{t}{\theta}\right) \quad x=-\ln p \quad E\left(p^{-t}\right)^{-\frac{1}{t}}=\Gamma\left(1-\frac{t}{\theta}\right)^{-\frac{1}{t}} \Phi^{-\frac{1}{t}}$
, $\Gamma$ is the so called Gamma function (check on Wikipedia)
We impose the parameter restriction $\sigma<1+\theta$ for the index to be well defined
> $\Phi_{j}$ summarizes technology, inputs costs, and geographic barriers around the world


## TRADE FLOWS AND GRAVITY

- Price distribution sourced from each country is invariant to origin
- All of the adjustment in trade flows is in the extensive margin of the mass of goods, not the intensive margin of average expenditure per good
- As a result, the fraction of goods sourced from an origin is also the fraction of spending!

$$
\pi_{i j}=\lambda_{i j}=\frac{X_{i j}}{X_{i j}}=\frac{T_{i}\left(w_{i} \tau_{i j}\right)^{-\theta}}{\sum_{k} T_{k}\left(w_{k} \tau_{k j}\right)^{-\theta}}
$$

- Notice that total sales in the origin áre:

$$
Q_{i}=\sum_{j} X_{i j}=T_{i} w_{i}^{-\theta} \sum_{j} \frac{\tau_{i j}^{-\theta} X_{j}}{\Phi_{j}}
$$

## TRADE FLOWS AND GRAVITY

, We can solve the expression for $Q_{i}$ for the $T_{i} w_{i}^{-\theta}$ and substitute into the trade shares to obtain:

$$
X_{i j}=\frac{\left(\tau_{i j} / p_{i}\right)^{-\theta} X_{i}}{\sum_{k}\left(\tau_{k j} / p_{k}\right)^{-\theta} X_{k}}
$$

- The gravity equation captures bilateral and multilateral resistance
- The numerator captures market size of a given destination as perceived from origin; the denominator total market size/access of origin
- Since more productive/close/cheap exporters expand on extensive margin the trade elasticity depends on $\theta$ not on $\sigma$


## ESTIMATING $\theta$

- Dividing two trade share expressions we derive

$$
\frac{\lambda_{i j}}{\lambda_{j j}}=\frac{\Phi_{j}}{\Phi_{i}} \tau_{i j}^{-\theta}=\left(\frac{P_{j} \tau_{i j}}{P_{i}}\right)^{-\theta}
$$

> The LHS is a normalized import share in $j$
( Eaton and Kortum then graph the relative import shares against distance
, Suggests one way of estimating $\theta$


## EQUILIBRIUM

- The equilibrium is then computed exactly as in the Armington model.
- All endogenous objects can be expressed as a function of $\left\{w_{i}\right\}$ only.
, Goods market clearing implies:

$$
w_{i} L_{i}=\sum_{j} \lambda_{i j} w_{i} L_{i} \text { where } \sum_{i} \lambda_{i j}=1
$$

- Simple iterative procedure will solve efficiently for $\left\{w_{i}\right\}$


## WELFARE AND GAINS FROM TRADE

- We again obtain an elegant GFT expression: $\hat{W}=\lambda_{i i}^{-\frac{1}{\theta}}$
( Country size influence gains from trade through $\lambda_{i i}$.
- Gains a greater the more heterogeneity in efficiency (the smaller $\theta$ )
- In conclusion: the modern trade models we saw (Krugman, Armington, Melitz, Eaton+Kortum)
- ...all yield gravity equations for bilateral trade flows and

D ...all have a similar formula for gains from trade

