INTERNATIONAL TRADE - ECON 245
FABIAN ECKERT

INCREASING RETURNS

INTRODUCTION

- Models on international trade so far all about:
, Interindustry trade, e.g., Ricardo's wine versus cloth
- Trade between dissimilar economies, e.g., in terms of factor endowments
- Two important unexplained regularities:
- Large amount of intraindustry trade, e.g, within consumer goods
- Large amount of trade among similar economies

INTRODUCTION

- Armington model did not explain these regularities: just re-produced them
- Also: so far CRS+perfect competition. What happens if we relax this?
- Krugman (1980):
- Combines increasing returns to scale and imperfect competition
- Provides theoretical justification for intraindustry and similar-country trade

MONOPOLISTIC COMPEITION+INCREASING RETURNS

- Monopolistic Competition
- MP is tractable form of imperfect competition without strategic interaction
- But as with monopoly: firms face downward sloping demand curves

Increasing Returns:

- Fixed cost of production: in equilibrium only one firm produces each variety
> There are profits - where do they go?
- They are spent on fixed costs
- Other profits competed away by free entry of other varieties

KRUGMAN (1980): SETUP WITH ONE COUNTRY

- Firms:
, Endogenous mass ("number") Ω of firms
, Firms pay fixed cost of entry f^{e} denominated in terms of domestic labor
- Each firm produces a unique variety of a differentiated product
- Each firm has same productivity and produces with labor only
, Consumers/Workers:
, CES preferences $+L$ workers supplying one unit of labor inelastically

KRUGMAN (1980): PREFERENCES

- Krugman re-writes the representative consumer's utility function as follow:

$$
U=\left(\int_{\Omega} q(\omega)^{\frac{\sigma-1}{\sigma}} d \omega\right)^{\frac{\sigma}{\sigma-1}}
$$

- As in Armington we assume $\sigma>1$.
> Note:
Diminishing marginal utility of consumption to extra units of each good
- Love for variety - adding varieties has no DRS. In symmetric equilibrium $U=\Omega^{(\sigma) /(\sigma-1)} q$

KRUGMAN (1980): FIRMS

- The problem of a firm is given as follows

$$
\max _{\{p(\omega)\}} p(\omega) q(\omega)-\frac{w}{z} q(\omega)-w f^{e}
$$

where demand for each variety, $q(\omega)$, sloped downward in price
, First order condition with respect to $p(\omega)$:

$$
q(\omega)+\left[p(\omega)-\frac{w}{z}\right] \frac{\partial q(\omega)}{\partial p(\omega)}=0
$$

KRUGMAN (1980): FIRMS

- General definition of elasticity of demand wrt price:

$$
\epsilon(\omega)=-\frac{p(\omega)}{q(\omega)} \frac{\partial q(\omega)}{\partial p(\omega)}>0
$$

, Using this, rewrite the first order expression for optimal pricing rule:

$$
p(\omega)=\frac{\epsilon(\omega)}{\epsilon(\omega)-1} \frac{w}{z}
$$

- In equilibrium prices are mark-up over marginal cost
- Size of markup depends on elasticity of demand

KRUGMAN (1980): CONSUMER OPTIMIZATION

, We already solved the consumer problem last time. Recall:

$$
q(\omega)=p(\omega)^{-\sigma} X P^{\sigma-1}
$$

- Assuming each variety accounts for little of aggregate spending:

$$
\frac{\partial q(\omega)}{\partial p(\omega)}=-\sigma p(\omega)^{-\sigma-1} X P^{\sigma-1}
$$

, Use both of these:

$$
\epsilon(\omega)=-\frac{p(\omega)}{q(\omega)} \frac{\partial q(\omega)}{\partial p(\omega)}=\frac{p(\omega)}{p(\omega)^{-\sigma} X P^{\sigma-1}} \sigma p(\omega)^{-\sigma-1} X P^{\sigma-1}=\sigma
$$

KRUGMAN (1980): EQUILIBRUM PRICES

- Plugging in the elasticity of demand from consumer optimization into the firm pricing rule gives the monopolistic competition price:

$$
p=\frac{\sigma}{\sigma-1} \frac{w}{z}
$$

- With CES preferences: price is constant markup over marginal cost
- Equilibrium is symmetric so consumption of individual good:

$$
c(\omega)=c=\frac{w}{\Omega p}
$$

KRUGMAN (1980): EQUILIBRIUM QUANTITIES

- Free entry assumption implies firms enter until profits are zero:

$$
\pi=p(\omega) q(\omega)-\frac{w}{z} q(\omega)-w f^{e}=0
$$

- Plugging in equilibrium prices and imposing symmetry $(q(\omega)=q)$ yields:

$$
q=(\sigma-1) z f^{e}
$$

> The quantity produced is just a function of parameters!
What does this imply for the effect of trade?

KRUGMAN (1980): EQUILIBRIUM NUMBER OF FIRMS

- Equilibrium number of varieties produced is determined by labor market clearing:

$$
L=\int_{\omega} l(\omega) d \omega=\Omega\left(q / z+f^{e}\right) \Rightarrow \Omega=\frac{L}{\sigma f^{e}}
$$

- Without loss of generality we can normalize the price to 1 , so that all endogenous variables are pinned down.

KRUGMAN (1980): EFFECTS OF INTERNATIONAL TRADE

- Suppose we add a symmetric second economy with which trade is free

D Since economies are identical wages, prices, number of firms will be the same in both

- Equilibrium consumption of each variety however is different:

$$
c=c^{\star}=\frac{w}{p\left(\Omega+\Omega^{\star}\right)}
$$

KRUGMAN (1980): EFFECTS OF INTERNATIONAL TRADE

> Gains from trade: consumers have access to a greater variety of goods and representative consumer's utility is increasing in the \# of varieties consumed

- Trade is intra-industry
- Direction of trade is indeterminate
, Volume of trade: value of imports in home country (simple gravity eq!)

$$
M=\frac{\Omega^{\star}}{\left(\Omega+\Omega^{\star}\right)}=(1-\lambda) L w
$$

where λ is the "home share" of production.

QUESTIONS

, What would have happened with constant elasticity and perfect competition?
(IRS+MP together explain what we see in the world

- CRS long criticizes as highly unrealistic, IRS crucial force in the world!
- Of course, regions within the US are like "similar" countries doing intraindustry trade
- IRS likely plays a crucial role in ICT-enabled services
, Much more work needed

SCALE AND TRADE

INTRODUCTION

, So far increasing returns were a crucial as a motive for trade with symmetric countries

- However, there were no "scale effects" from trade: idea that increase in market allows some firms to "exploit scale better"
- The reason is our constant elasticity assumption. Suppose instead:

$$
U=\int_{\Omega} v(c(\omega)) d \omega
$$

where $v(\cdot)$ is increasing in its argument and concave

ELASTICITY OF SUBSTITUTION

- Firm side is as before, so firm pricing rule is unchanged:

$$
p(\omega)=\frac{\epsilon(\omega)}{\epsilon(\omega)-1} \frac{w}{z}
$$

- Derive general elasticity of substitution:

$$
\nu^{\prime}(c(\omega))=\lambda p(\omega)
$$

- Effect of a price change, assuming no effect on λ :

$$
v^{\prime \prime} d c(\omega)=d p(\omega) \lambda \Rightarrow \frac{d c(\omega)}{d p(\omega)}=\frac{\lambda}{v^{\prime \prime}}<0
$$

ELASTICITY OF SUBSTITUTION

- So the elasticity of demand is now:

$$
\epsilon(\omega)=-\frac{p(\omega)}{q(\omega)} \frac{\partial q(\omega)}{\partial p(\omega)}=-\frac{v^{\prime} c(\omega)}{v^{\prime \prime}}>0
$$

, We now this is positive from assumptions on $v(\cdot)$.
> But don't know whether this is increasing or decreasing in $c(\omega)$

- This is crucial and we assume

$$
\frac{d \epsilon(\omega)}{d c(\omega)}<0
$$

- So as we move up the demand curve the elasticity rises

ELASTICITY OF SUBSTITUTION

- Free entry is as before (Zero Profits)

$$
\pi=p(\omega) q(\omega)-\frac{w}{z} q(\omega)-w f^{e}=0 \Rightarrow p / w=1 / z+f /(L c(\omega))
$$

- Also the firm pricing equation (profit maximization)

$$
p / w=\epsilon(\omega) /(\epsilon(\omega)-1) 1 / z
$$

- Note that $\epsilon(\omega)$ is only a function of $c(\omega)$ so that equilibrium pinned down by p / w and c
- Once we have solved for p / w and c, we can then solve for the mass of firms from labor market clearing:

$$
L=\int_{\omega} l(\omega) d \omega=\Omega\left(L c(\omega) / z+f^{e}\right) \Rightarrow \Omega=\frac{L}{\left(L c(\omega) / z+f^{e}\right)}
$$

THE EFFECTS OF FREE TRADE

- Now suppose adding a second identical country with which trade is free

This is exactly like keeping a single economy but doubling L. So we analyze that instead.

- Graph zero profit eq $(p / w=1 / z+f /(L c(\omega)))$ and price setting $(p / w=\epsilon(\omega) /(\epsilon(\omega)-1) 1 / z)$ with p / w on the y-axis and $c(\omega)$ on the x-axis.
- A doubloon in L shifts zero profit curve down: so c falls and p / w falls.
- Does not change firm pricing equation, only free entry adjusts
, [AS BEFORE] Total product variety increases, so utility increases
- [NEW!] Equilibrium consumption of each variety falls: consume less of each variety, raising elasticity of demand [since it is no longer constant], lowering markups and hence price, increasing welfare.
[[NEW!] Firms increase scale, which lowers average costs, hence price [Can see this since number of firms in each country now falls! (see next slide)]

FIRM SELECTION

- Contrary to before, the number of varieties produced within each country now falls when open to trade
- We saw that p / w falls so revenue falls or costs increase: so it is less profitable to run a firm which must mean that fewer firms enter and so Ω decreases.
- Can also see this since p / w falls firms must move down their average cost curves, so q increases. But then Ω in each country (holding L fixed) must decrease from:

$$
\Omega=\frac{L}{\left(q / z+f^{e}\right)}
$$

- There is "selection", prices fall as firms move down average cost curves: surviving firms increase output, sell less per person but to more consumers

TRANSPORT COSTS

RENTRODUCE ICEBERG TRADE COST - WHAT CHANGES?

- Iceberg trade costs: for one unit to arrive in destination, need to ship τ units.
- Price of foreign variety in home country:

$$
p^{\star}=\frac{\sigma}{\sigma-1} \frac{w}{z} \tau
$$

- Define as ζ demand of home residence for foreign relative to domestic variety

$$
\zeta=\frac{\left(\frac{\sigma}{\sigma-1} \frac{\tau w^{\star}}{z^{\star}}\right)^{-\sigma} X P^{\sigma-1}}{\left(\frac{\sigma}{\sigma-1} \frac{w}{z}\right)^{-\sigma} X P^{\sigma-1}}=\frac{\left(\frac{w^{\star} \tau}{z^{\star}}\right)^{-\sigma}}{\left(\frac{w}{z}\right)^{-\sigma}}
$$

RENNTRODUCE ICEBERG TRADE COST - WHAT CHANGES?

- Home consumers' budget constraint implies that their expenditure equals their income:

$$
\left(\Omega p+\zeta \Omega^{\star} p\right) d=w
$$

where d is the consumption of a representative domestic variety.

- Since elasticity of demand remains the same, pricing rules of firms remain the same.
- Since pricing is the same, free entry is the same so Ω and Ω^{\star} are unchanged

RENTRODUCE ICEBERG TRADE COST - WHAT CHANGES?

- Introducing transport costs does have implications for relative wage
- If $L>L^{\star}$ then home will have higher wage:
- Large market advantage when production is subject to economies of scale and world markets are segregated by transport costs
- Gives rise to notion of market access [indexing shipment origin i, destination j]

$$
p_{i} q_{i}=\sum_{j} \tau_{i j}^{1-\sigma} p_{i}^{1-\sigma} P_{j}^{\sigma-1} E_{j} \Leftrightarrow p_{i}^{\sigma}=\frac{1}{q_{i}} \sum_{j} \tau_{i j}^{1-\sigma} P_{j}^{\sigma-1} E_{j} \equiv \frac{1}{q_{i}} M A_{i}
$$

So wage in i increasing in "Market Access" (MA) since $p_{i}=\sigma /(\sigma-1) w_{i} / z_{i} \propto w_{i}$

HOME MARKET EFFECT

INTRODUCTION

- With increasing returns to scale (IRS) and transport costs: locations export the good they have large local demand for
- This is called the home market effect
- Can think of it as sectoral specialization
- Intuition: IRS imply firms wish to concentrate production, transport cost imply this is optimally done close to large markets.
- Krugman developed this as an argument for agglomeration more general

INTRODUCING TWO SECTORS AND TYPES OF CONSUMERS

, Need a two sector version of above model.
, There are two industries, A and B, and within each industry there are many different varieties.

- Demand for each industries comes from separate local populations L_{A} and L_{B} :

$$
U_{A}=\left(\int_{\Omega_{A}} q(\omega)^{\frac{\sigma-1}{\sigma}} d \omega\right)^{\frac{\sigma}{\sigma-1}} \quad U_{B}=\left(\int_{\Omega_{B}} q(\omega)^{\frac{\sigma-1}{\sigma}} d \omega\right)^{\frac{\sigma}{\sigma-1}}
$$

(Each type of worker can work in any industry and supplies 1 unit inelastically.

- Production technologies in both industries identical and as before.

EQUILIBRIUM WITHOUT TRADE

- Since consumers are identical within each group:

$$
q_{A}=L_{A} c_{A} \quad q_{B}=L_{B} c_{B}
$$

- Labor market clearing overall:

$$
L=\int_{\omega \in \Omega_{A}} l(\omega) d \omega+\int_{\omega \in \Omega_{B}} l(\omega) d \omega=\Omega_{A}\left(q_{A} / z+f^{e}\right)+\Omega_{B}\left(q_{B} / z+f^{e}\right)
$$

- Pricing rule of firms is the same as before
- Pricing rule+Free entry implies equilibrium output of each of the two types of varieties is the same as before

EQUILIBRIUM WITHOUT TRADE

- So we can determine $\Omega_{A}+\Omega_{B}$ from labor market clearing (previous slide)
- The size of each industry is determined by goods market clearing for each sector:

$$
\Omega_{A} p q=w L_{A} \quad \Omega_{B} p q=w L_{B}
$$

, But then:

$$
\frac{\Omega_{A}}{\Omega_{B}}=\frac{L_{A}}{L_{B}}
$$

- So we have solved for all endogenous objects of an individual country!

EQUILIBRIUM WITH TRADE

- Assume the foreign country and home are mirror images:

$$
L_{A}=L_{B}^{\star} \quad L_{B}=L_{A}^{\star}
$$

- As a result equilibrium outcomes are the same except for the mass of type A and type B products produced.
- Home's share of expenditure on the home good is:

$$
\lambda=\frac{\Omega_{A} p d}{\left(\Omega_{A} p+\zeta \Omega_{A}^{\star} p^{\star}\right) d}=\frac{\Omega_{A}}{\Omega_{A}+\zeta \Omega_{A}^{\star}}
$$

EQUILIBRIUM WITH TRADE: LABOR MARKET CLEARING

- For each industry value of production in each country has to equal value of expenditure on the varieties produced in that country.
> In sector A, we hence need:

$$
\begin{aligned}
& \Omega_{A} p_{A} q_{A}=\frac{\Omega_{A}}{\Omega_{A}+\zeta \Omega_{A}^{\star}} w L_{A}+\frac{\zeta \Omega_{A}}{\zeta \Omega_{A}+\Omega_{A}^{\star}} w^{\star} L_{A}^{\star} \\
& \Omega_{A}^{\star} p_{A}^{\star} q_{A}^{\star}=\frac{\Omega_{A} \zeta}{\Omega_{A}+\zeta \Omega_{A}^{\star}} w L_{A}+\frac{\Omega_{A}}{\zeta \Omega_{A}+\Omega_{A}^{\star}} w^{\star} L_{A}^{\star}
\end{aligned}
$$

, Suppose that both countries are imperfectly specialized $\Omega_{A}, \Omega_{B}, \Omega_{A}^{\star}, \Omega_{B}^{\star}>0$

EQUILIBRIUM WITH TRADE: LABOR MARKET CLEARING

- Divide through by Ω_{A} and Ω_{A}^{\star} respectively and notice that $w=w^{\star}, p_{A}=p_{A}^{\star}$, and $q_{A}=q_{A}^{\star}$:

$$
\frac{L_{A}}{L_{A}^{\star}}=\frac{\Omega_{A}+\zeta \Omega_{A}^{\star}}{\zeta \Omega_{A}+\Omega_{A}^{\star}} \Rightarrow \frac{\Omega_{A}}{\Omega_{A}^{\star}}=\frac{\frac{L_{A}}{L_{A}^{\star}}-\zeta}{1-\zeta \frac{L_{A}}{L_{A}^{\star}}}
$$

- If $L_{A}=L_{A}^{\star}$ then mass of size of industry A the same.
- For $\zeta<L_{A} / L_{A}^{\star}<1 / \zeta$ (range of incomplete specialization), a rise in the relative size of L_{A} / L_{A}^{\star} leads to a rise of home's share in the industry.
- So labor market clearing across countries pins down sector size now!

VOLUME AND PATTERN OF TRADE

- Home's sectoral trade balance for industry A:

$$
T_{A}=\frac{\zeta \Omega_{A}}{\zeta \Omega_{A}+\Omega_{A}^{\star}} w L_{A}^{\star}-\frac{\zeta \Omega_{A}^{\star}}{\Omega_{A}+\zeta \Omega_{A}^{\star}} w L_{A}=\frac{\zeta w L_{A}^{\star}}{\Omega_{A} \zeta+\Omega_{A}^{\star}}\left[\Omega_{A}-\Omega_{A}^{\star}\right]
$$

- But we just showed that industry A is larger at home if it has a larger share of type A workers!
- So home is a net exporter of industry A if it has a larger relative home market for industry A
- With transport cost and IRS: differences in demand matter for patterns of trade!
- Increases in relative demand lead to more than proportionate increase in supply!

TAKE-AWAYS

- In Constant Returns to Scale world, increases in home demand lead either to proportional or less than proportional increase in local production
- The gravity equation is not a good test of IRS+transport cost since other models make this prediction.
- Implications like scale effects on firm level or home market effect can be used to test increasing IRS+transport cost (see Davis Weinstein 1999, 2003)

GENERAL VERSION

KRUGMAN (1980): PREFERENCES

- Krugman re-writes the representative consumer's utility function as follow:

$$
U_{j}=\left(\sum_{\omega \in \Omega} a_{i j}(\omega)^{1 / \sigma} q_{i j}(\omega)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}=\left(\sum_{i \in S} \int_{\Omega_{i}} q_{i j}(\omega)^{\frac{\sigma-1}{\sigma}} d \omega\right)^{\frac{\sigma}{\sigma-1}}
$$

- We can user our previous results for demand

$$
q_{i j}(\omega)=p_{i j}(\omega)^{-\sigma} X_{j} f_{j}^{\sigma-1} \quad \text { where } \quad P_{j} \equiv\left(\sum_{i \in S} p_{i j}(\omega)^{1-\sigma)} d \omega\right)^{\frac{1}{1-\sigma}}
$$

, ...and trade flows:

$$
x_{i j}(\omega)=p_{i j}(\omega)^{1-\sigma} X_{j} P_{j}^{\sigma-1} \quad X_{i j}=\int_{\Omega_{i}} x_{i j}(\omega) d \omega=X_{j} P_{j}^{\sigma-1} \int_{\Omega_{i}} p_{i j}(\omega)^{1-\sigma} d \omega
$$

KRUGMAN (1980): FIRMS

- Firms in country i have the same productivity z_{i} and produce using labor only.
- The optimization problem faced by firm ω in country i is:

$$
\max _{\left\{p_{p}(\omega)\right\}_{j}}\left(\sum_{j \in S}\left(p_{j}(\omega) q_{j}(\omega)-w_{i} \frac{\tau_{i j}}{z_{i}} q_{j}(\omega)\right)-w_{i} f_{i}^{e} \text { s.t. } q_{j}(\omega)=p_{j}(\omega)^{-\sigma} X_{j} P_{j}^{\sigma-1}\right.
$$

, Subbing in the constraint:

$$
\max _{\left\{p_{j}(\omega)\right\}_{j}}\left(\sum_{j \in S} p_{j}(\omega)^{1-\sigma} X_{j} P_{j}^{\sigma-1}-w_{i} \frac{\tau_{i j}}{z_{i}} p_{j}(\omega)^{-\sigma} X_{j} P_{j}^{\sigma-1}(\omega)\right)-w_{i} f_{i}^{e}
$$

- Constant marginal cost imply that can consider each destination a separate problem

KRUGMAN (1980): FIRMS

> Profit maximization implies the following optimal pricing:

$$
p_{i j}\left(z_{i}\right)=\frac{\sigma}{\sigma-1} \frac{\tau_{i j} w_{i}}{z_{i}}
$$

- We can drop the ω since all firms in i make the same optimal decisions.
- We carry the z_{i} for contrast with the heterogeneous firm case
- In Melitz (2003) firms in country i will differ in their productivity

KRUGMAN (1980): GRAVITY

- We substitute the optimal pricing equation into the bilateral trade expression:

$$
X_{i j}=X_{j} \rho_{j}^{\sigma-1} \int_{\Omega_{i}}\left(\frac{\sigma}{\sigma-1} \frac{\tau_{i j} w_{i}}{z_{i}}\right)^{1-\sigma} d \omega=\left(\frac{\sigma}{\sigma-1}\right)^{1-\sigma} \tau_{i j}^{1-\sigma}\left(\frac{w_{i}}{z_{i}}\right)^{1-\sigma} N_{i} X_{j} \rho_{j}^{\sigma-1}
$$

- Where N_{i} is the measure of firms producing in country i
- Compare this to gravity equation in Armington model:
- Additional term relating to markups: all else equal reduces trade
- Additional term relating to number of firm: need additional eq. condition

KRUGMAN (1980): WELFARE

- With firm profits the real wage no longer equals welfare of consumers
- Need an additional restriction: will assume free entry driving profits to zero
- Can derive an expression for real wages similar to Armington model:
- Recall from Armington:

$$
\frac{w_{j}}{P_{j}}=\left(\frac{\sigma-1}{\sigma}\right) N_{j}^{\frac{1}{\sigma-T}} z_{j} \lambda_{i j}^{\frac{1}{1-\sigma}}
$$

$$
U_{j}=\frac{w_{j}}{P_{j}}=a_{i j}^{\frac{1}{\tilde{j}-1}} A_{j} \lambda_{i j}^{\frac{1}{i j-}}=A_{j} \lambda_{i j}^{\frac{1}{i-\sigma}}
$$

- Last equality because Krugman assumed $a_{j i}=1 \forall j, i$

NEW GANS FROM TRADE

NEW SOURCES OF GAINS

- Get access to foreign varieties+love for varieties [Krugman with CES]
- Lower price from larger scale at home firms [Krugman without CES]
- Lower price from decrease in markup [Krugman without CES]
- Selection of better firms? [Not yet, all firms the same]
- Melitz (2003) [his JMP!!!] which is up next

