INTERNATIONAL TRADE - ECON 245 FABIAN ECKERT

INTRODUCTION

- Models on international trade so far all about:
 - Interindustry trade, e.g., Ricardo's wine versus cloth
 - > Trade between dissimilar economies, e.g., in terms of factor endowments
- Two important unexplained regularities:
 - Large amount of intraindustry trade, e.g, within consumer goods
 - Large amount of trade among similar economies

INTRODUCTION

- Also: so far CRS+perfect competition. What happens if we relax this?

Krugman (1980):

- Combines increasing returns to scale and imperfect competition

Armington model did not explain these regularities: just re-produced them

Provides theoretical justification for intraindustry and similar-country trade

MONOPOLISTIC COMPETITION+INCREASING RETURNS

- Monopolistic Competition
 - MP is tractable form of imperfect competition without strategic interaction
 - But as with monopoly: firms face downward sloping demand curves
- Increasing Returns:
 - Fixed cost of production: in equilibrium only one firm produces each variety
 - There are profits where do they go?
 - They are spent on fixed costs
 - Other profits competed away by free entry of other varieties

KRUGMAN (1980): SETUP WITH ONE COUNTRY

Firms:

- Endogenous mass ("number") Ω of firms
- Firms pay fixed cost of entry f^e denominated in terms of domestic labor
- Each firm produces a unique variety of a differentiated product
- Each firm has same productivity and produces with labor only
- Consumers/Workers:
 - CES preferences + L workers supplying one unit of labor inelastically

KRUGMAN (1980): PREFERENCES

- Krugman re-writes the representative consumer's utility function as follow:
- > As in Armington we assume $\sigma > 1$.
- **Note**:
 - Diminishing marginal utility of consumption to extra units of each good
 - $U = \Omega^{(\sigma)/(\sigma-1)} q$

$U = \left(\int_{\Omega} q(\omega)^{\frac{\sigma - 1}{\sigma}} d\omega \right)^{\frac{\sigma}{\sigma - 1}}$

Love for variety - adding varieties has no DRS. In symmetric equilibrium

KRUGMAN (1980): FIRMS

- The problem of a firm is given as follows
- where demand for each variety, $q(\omega)$, sloped downward in price
- First order condition with respect to

 $q(\omega) + [p(\omega$

$$-\frac{w}{z}q(\omega)-wf^{e}$$

$$p(\omega):$$

$$(w) - \frac{w}{z} \frac{\partial q(\omega)}{\partial p(\omega)} = 0$$

KRUGMAN (1980): FIRMS

- $\epsilon(\omega) = -\frac{p(\omega)}{q(\omega)}\frac{\partial q(\omega)}{\partial p(\omega)} > 0$ $p(\omega) = \frac{\epsilon(\omega)}{\epsilon(\omega) - 1} \frac{w}{z}$
- General definition of elasticity of demand wrt price: Using this, rewrite the first order expression for optimal pricing rule:
- In equilibrium prices are mark-up over marginal cost
- Size of markup depends on elasticity of demand

KRUGMAN (1980): CONSUMER OPTIMIZATION

> We already solved the consumer problem last time. Recall:

- Assuming each variety accounts for little of aggregate spending: $\frac{\partial q(\omega)}{\partial p(\omega)} = -\sigma p(\omega)$ Use both of these: $\epsilon(\omega) = -\frac{p(\omega)}{q(\omega)}\frac{\partial q(\omega)}{\partial p(\omega)} = \frac{p(\omega)}{p(\omega)}\frac{\partial q(\omega)}{\partial p(\omega)} = \frac{p(\omega)}{p(\omega)}\frac{\partial q(\omega)}{\partial p(\omega)}$
- $q(\omega) = p(\omega)^{-\sigma} X P^{\sigma-1}$

$$(\omega)^{-\sigma-1} X P^{\sigma-1}$$

$$\frac{p(\omega)}{(\omega)^{-\sigma}XP^{\sigma-1}}\sigma p(\omega)^{-\sigma-1}XP^{\sigma-1} = \sigma$$

KRUGMAN (1980): EQUILIBRIUM PRICES

Plugging in the elasticity of demand from consumer optimization into the firm pricing rule gives the monopolistic competition price:

- With CES preferences: price is **constant** markup over marginal cost
- Equilibrium is symmetric so consumption of individual good:

 $C(\omega)$

- $p = \frac{\sigma \quad w}{\sigma 1 \quad z}$

$$= c = \frac{w}{\Omega p}$$

KRUGMAN (1980): EQUILIBRIUM QUANTITIES

- Free entry assumption implies firms enter until profits are zero:
- > Plugging in equilibrium prices and imposing symmetry ($q(\omega) = q$) yields: $q = (\sigma - 1)zf^e$
- The quantity produced is just a function of parameters!
- What does this imply for the effect of trade?

$\pi = p(\omega)q(\omega) - \frac{w}{z}q(\omega) - wf^e = 0$

KRUGMAN (1980): EQUILIBRIUM NUMBER OF FIRMS

Equilibrium number of varieties produced is determined by labor market clearing:

$$L = \int_{\omega} l(\omega) d\omega = \Omega(q/z + f^e) \Rightarrow \Omega = \frac{L}{\sigma f^e}$$

Without loss of generality we can normalize the price to 1, so that all endogenous variables are pinned down.

KRUGMAN (1980): EFFECTS OF INTERNATIONAL TRADE

- Suppose we add a symmetric second economy with which trade is free
- Since economies are identical wages, prices, number of firms will be the same in both
- Equilibrium consumption of each variety however is different:

 $c = c^{\star} = \frac{w}{p(\Omega + \Omega^{\star})}$

KRUGMAN (1980): EFFECTS OF INTERNATIONAL TRADE

- Trade is intra-industry
- Direction of trade is indeterminate
- Volume of trade: value of imports in home country (simple gravity eq!) where λ is the "home share" of production.

Gains from trade: consumers have access to a greater variety of goods and representative consumer's utility is increasing in the # of varieties consumed

 $M = \frac{\Omega^{\star}}{(\Omega + \Omega^{\star})} = (1 - \lambda)Lw$

QUESTIONS

- What would have happened with constant elasticity and perfect competition?
 - IRS+MP together explain what we see in the world
 - CRS long criticizes as highly unrealistic, IRS crucial force in the world!
- Of course, regions within the US are like "similar" countries doing intraindustry trade
- IRS likely plays a crucial role in ICT-enabled services
 - Much more work needed

INTRODUCTION

- So far increasing returns were a crud countries
 - However, there were no "scale effects" from trade: idea that increase in market allows some firms to "exploit scale better"
- > The reason is our constant elasticity assumption. Suppose instead: $U = \int_{\Omega} v(c(\omega)) d\omega$
- where $v(\cdot)$ is increasing in its argument and concave

So far increasing returns were a crucial as a motive for trade with symmetric

ELASTICITY OF SUBSTITUTION

- Firm side is as before, so firm pricing rule is unchanged:
- Derive general elasticity of substitution:
- Figure Effect of a price change, assuming no effect on λ :
 - $v''dc(\omega) = c$

 $p(\omega) = \frac{\epsilon(\omega)}{\epsilon(\omega) - 1} \frac{w}{z}$

$$(c(\omega)) = \lambda p(\omega)$$

$$p(\omega)\lambda \Rightarrow \frac{dc(\omega)}{dp(\omega)} = \frac{\lambda}{v''} < 0$$

ELASTICITY OF SUBSTITUTION

- So the elasticity of demand is now: $\epsilon(\omega) = -\frac{p(\omega)}{q(\omega)}\frac{d}{d}$ We now this is positive from assumption
 - But don't know whether this is increasing or decreasing in $c(\omega)$
 - This is crucial and we assume

So as we move up the demand curve the elasticity rises

$$\frac{\partial q(\omega)}{\partial p(\omega)} = -\frac{v'c(\omega)}{v''} > 0$$

ons on $v(\cdot)$.

$$\frac{r(\omega)}{r(\omega)} < 0$$

ELASTICITY OF SUBSTITUTION

- Free entry is as before (Zero Profits)
- Also the firm pricing equation (profit maximization)
- Note that $\epsilon(\omega)$ is only a function of $c(\omega)$ so that equilibrium pinned down by p/w and c
- Once we have solved for p/w and c, we can then solve for the mass of firms from labor market clearing: $L = \int l(\omega)d\omega = \Omega(Lc(\omega))$

$\pi = p(\omega)q(\omega) - \frac{w}{z}q(\omega) - wf^e = 0 \Rightarrow p/w = 1/z + f/(Lc(\omega))$ $p/w = \epsilon(\omega)/(\epsilon(\omega) - 1)1/z$

$$)/z + f^e) \Rightarrow \Omega = \frac{L}{(Lc(\omega)/z + f^e)}$$

THE EFFECTS OF FREE TRADE

- Now suppose adding a second identical country with which trade is free
 - ▶ This is exactly like keeping a single economy but doubling *L*. So we analyze that instead.
 - Graph zero profit eq ($p/w = 1/z + f/(Lc(\omega))$) and price setting ($p/w = \epsilon(\omega)/(\epsilon(\omega) 1)1/z$) with p/w on the y-axis and $c(\omega)$ on the x-axis.
 - A doubloon in L shifts zero profit curve down: so c falls and p/w falls.
- Does not change firm pricing equation, only free entry adjusts
 - [AS BEFORE] Total product variety increases, so utility increases
 - INEW!] Equilibrium consumption of each variety falls: consume less of each variety, raising elasticity of demand [since it is no longer constant], lowering markups and hence price, increasing welfare.
 - [NEW!] Firms increase scale, which lowers average costs, hence price [Can see this since number of firms in each country now falls! (see next slide)]

~~

FIRM SELECTION

- open to trade
- which must mean that fewer firms enter and so Ω decreases.
- \triangleright Can also see this since p/w falls firms must move down their average cost curves, so q increases. But then Ω in each country (holding L fixed) must decrease from:
 - $\Omega = \frac{L}{(q/z + f^e)}$
 - increase output, sell less per person but to more consumers

Contrary to before, the number of varieties produced within each country now falls when

> We saw that p/w falls so revenue falls or costs increase: so it is less profitable to run a firm

There is "selection", prices fall as firms move down average cost curves: surviving firms

REINTRODUCE ICEBERG TRADE COST – WHAT CHANGES?

- Price of foreign variety in home cour

$$\zeta = \frac{\left(\frac{\sigma}{\sigma-1} \frac{\tau w^{\star}}{z^{\star}}\right)^{-\sigma} X P^{\sigma-1}}{\left(\frac{\sigma}{\sigma-1} \frac{w}{z}\right)^{-\sigma} X P^{\sigma-1}} = \frac{\left(\frac{w^{\star} \tau}{z^{\star}}\right)^{-\sigma}}{\left(\frac{w}{z}\right)^{-\sigma}}$$

 \triangleright Iceberg trade costs: for one unit to arrive in destination, need to ship τ units.

$$\frac{\sigma}{\sigma - 1} \frac{w}{z}$$

> Define as ζ demand of home residence for foreign relative to domestic variety

REINTRODUCE ICEBERG TRADE COST - WHAT CHANGES?

Home consumers' budget constraint implies that their expenditure equals their income:

where d is the consumption of a representative domestic variety.

- Since elasticity of demand remains the same, pricing rules of firms remain the same.
- \blacktriangleright Since pricing is the same, free entry is the same so Ω and Ω^{\star} are unchanged

- $(\Omega p + \zeta \Omega^* p)d = w$

REINTRODUCE ICEBERG TRADE COST - WHAT CHANGES?

- Introducing transport costs does have implications for relative wage
- If $L > L^{\star}$ then home will have higher wage:
 - Large market advantage when production is subject to economies of scale and world markets are segregated by transport costs
- Gives rise to notion of market access [indexing shipment origin i, destination j] $\sigma = \frac{1}{q_i} \sum_{j} \tau_{ij}^{1-\sigma} P_j^{\sigma-1} E_j \equiv \frac{1}{q_i} MA_i$ So wage in *i* increasing in "Market Access" (MA) since $p_i = \sigma/(\sigma - 1)w_i/z_i \propto w_i$

$$p_i q_i = \sum_j \tau_{ij}^{1-\sigma} p_i^{1-\sigma} P_j^{\sigma-1} E_j \Leftrightarrow p_i^{\sigma} = j$$

INTRODUCTION

- good they have large local demand for
 - This is called the home market effect
 - Can think of it as sectoral specialization
- Intuition: IRS imply firms wish to concentrate production, transport cost imply this is optimally done close to large markets.
- Krugman developed this as an argument for agglomeration more general

With increasing returns to scale (IRS) and transport costs: locations export the

INTRODUCING TWO SECTORS AND TYPES OF CONSUMERS

- Need a two sector version of above model.
- There are two industries, A and B, and within each industry there are many different varieties.
- Demand for each industries comes from separate local populations L_A and L_B : $U_A = \left(\int_{\Omega_A} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}} \qquad U_B = \left(\int_{\Omega_B} q(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}$
- Each type of worker can *work* in any industry and supplies 1 unit inelastically.
- Production technologies in both industries identical and as before.

JILIBRIUM WITHOUT TRADE

Since consumers are identical within each group: $q_A = L_A c_A \qquad c_A$

- Labor market clearing overall: $L = \int_{\omega \in \Omega_{+}} l(\omega)d\omega + \int_{\omega \in \Omega_{-}} l(\omega)d\omega = \Omega_{A}(q_{A}/z + f^{e}) + \Omega_{B}(q_{B}/z + f^{e})$
- Pricing rule of firms is the same as before
- varieties is the same as before

$$q_B = L_B c_B$$

Pricing rule+Free entry implies equilibrium output of each of the two types of

EQUILIBRIUM WITHOUT TRADE

- So we can determine $\Omega_A + \Omega_B$ from labor market clearing (previous slide) The size of each industry is determined by goods market clearing for each
- sector:

$$\Omega_A pq = wL_A \qquad \Omega_B pq = wL_B$$

But then:

- So we have solved for all endogenous objects of an individual country!

 $\frac{\Omega_A}{\Omega_R} = \frac{L_A}{L_R}$

EQUILIBRIUM WITH TRADE

- Assume the foreign country and home are mirror images:
- and type B products produced.
- Home's share of expenditure on the home good is:

$$\lambda = \frac{\Omega_A p}{(\Omega_A p + \zeta \zeta)}$$

 $L_A = L_B^{\star} \qquad L_B = L_A^{\star}$

As a result equilibrium outcomes are the same except for the mass of type A

EQUILIBRIUM WITH TRADE: LABOR MARKET CLEARING

- expenditure on the varieties produced in that country.
- In sector A, we hence need:

$$\Omega_{A}p_{A}q_{A} = \frac{\Omega_{A}}{\Omega_{A} + \zeta\Omega_{A}^{\star}}wL_{A} + \frac{\zeta\Omega_{A}}{\zeta\Omega_{A} + \Omega_{A}^{\star}}w^{\star}L_{A}^{\star}$$
$$\Omega_{A}^{\star}p_{A}^{\star}q_{A}^{\star} = \frac{\Omega_{A}\zeta}{\Omega_{A} + \zeta\Omega_{A}^{\star}}wL_{A} + \frac{\Omega_{A}}{\zeta\Omega_{A} + \Omega_{A}^{\star}}w^{\star}L_{A}^{\star}$$

$$\Omega_{A}p_{A}q_{A} = \frac{\Omega_{A}}{\Omega_{A} + \zeta\Omega_{A}^{\star}}wL_{A} + \frac{\zeta\Omega_{A}}{\zeta\Omega_{A} + \Omega_{A}^{\star}}w^{\star}L_{A}^{\star}$$
$$\Omega_{A}^{\star}p_{A}^{\star}q_{A}^{\star} = \frac{\Omega_{A}\zeta}{\Omega_{A} + \zeta\Omega_{A}^{\star}}wL_{A} + \frac{\Omega_{A}}{\zeta\Omega_{A} + \Omega_{A}^{\star}}w^{\star}L_{A}^{\star}$$

For each industry value of production in each country has to equal value of

Suppose that both countries are imperfectly specialized $\Omega_A, \Omega_B, \Omega_A^{\star}, \Omega_R^{\star} > 0$

ILIBRIUM WITH TRADE: LABOR MARKET CLEARING

- and $q_A = q_A^{\star}$:
 - $\frac{L_A}{L_A^{\star}} = \frac{\Omega_A + \zeta \Omega}{\zeta \Omega_A + \Omega}$
- If $L_A = L_A^{\star}$ then mass of size of indust
- size of L_A/L_A^{\star} leads to a rise of home's share in the industry.
- So labor market clearing across countries pins down sector size now!

> Divide through by Ω_A and Ω_A^{\star} respectively and notice that $w = w^{\star}$, $p_A = p_A^{\star}$,

$$\frac{2^{\star}_{A}}{2^{\star}_{A}} \Rightarrow \frac{\Omega_{A}}{\Omega^{\star}_{A}} = \frac{\frac{L_{A}}{L^{\star}_{A}} - \zeta}{1 - \zeta \frac{L_{A}}{L^{\star}_{A}}}$$

Stry A the same.

For $\zeta < L_A/L_A^* < 1/\zeta$ (range of incomplete specialization), a rise in the relative

VOLUME AND PATTERN OF TRADE

- Home's sectoral trade balance for industry A:
- workers!
 - industry A
- With transport cost and IRS: differences in demand matter for patterns of trade!

$T_{A} = \frac{\zeta \Omega_{A}}{\zeta \Omega_{A} + \Omega^{\star}} w L_{A}^{\star} - \frac{\zeta \Omega_{A}^{\star}}{\Omega_{A} + \zeta \Omega^{\star}} w L_{A} = \frac{\zeta w L_{A}^{\star}}{\Omega_{A} \zeta + \Omega^{\star}} [\Omega_{A} - \Omega_{A}^{\star}]$ But we just showed that industry A is larger at home if it has a larger share of type A

So home is a net exporter of industry A if it has a larger relative home market for

Increases in relative demand lead to more than proportionate increase in supply!

TAKE-AWAYS

- In Constant Returns to Scale world, increases in home demand lead either to proportional or less than proportional increase in local production
- The gravity equation is not a good test of IRS+transport cost since other models make this prediction.
 - Implications like scale effects on firm level or home market effect can be used to test increasing IRS+transport cost (see Davis Weinstein 1999, 2003)

KRUGMAN (1980): PREFERENCES

- Krugman re-writes the representative consumer's utility function as follow: $U_{j} = \left(\sum_{\omega \in \Omega} a_{ij}(\omega)^{1/\sigma} q_{ij}(\omega)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} = \left(\sum_{i \in \Omega} \int_{\Omega} q_{ij}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}$
- We can user our previous results for demand $q_{ij}(\omega) = p_{ij}(\omega)^{-\sigma} X_j P_j^{\sigma-1} \quad \text{wt}$
- …and trade flows:

$$x_{ij}(\omega) = p_{ij}(\omega)^{1-\sigma} X_j P_j^{\sigma-1} \quad X_{ij} = \int_{\Omega_i} x_{ij}(\omega) d\omega = X_j P_j^{\sigma-1} \int_{\Omega_i} p_{ij}(\omega)^{1-\sigma} d\omega$$

here
$$P_j \equiv \left(\sum_{i \in S} p_{ij}(\omega)^{1-\sigma} d\omega\right)^{\frac{1}{1-\sigma}}$$

KRUGMAN (1980): FIRMS

- The optimization problem faced by firm ω in country *i* is:

$$\max_{\{(\omega)\}_j} \left(\sum_{j \in S} (p_j(\omega)q_j(\omega) - w_i \frac{\tau_{ij}}{z_i} q_j(\omega)) - w_i \frac{\tau_{ij}}{z_i} q_j(\omega) \right) \right)$$

Subbing in the constraint:

$$\left| \sum_{i \in S} p_j(\omega)^{1-\sigma} X_j P_j^{\sigma-1} - w_i \frac{\tau_{ij}}{z_i} p_j(\omega)^{-\sigma} X_j P_j^{\sigma-1}(\omega) \right| - w_i f_i^{\sigma}$$

problem

max

 $\{p_i(\omega)\}$

Firms in country i have the same productivity z_i and produce using labor only. $q_j(\omega) \left| -w_i f_i^e \text{ s.t. } q_j(\omega) = p_j(\omega)^{-\sigma} X_j P_j^{\sigma-1} \right|$

Constant marginal cost imply that can consider each destination a separate

KRUGMAN (1980): FIRMS

- Profit maximization implies the following optimal pricing:
- We can drop the ω since all firms in *i* make the same optimal decisions.
 - We carry the z_i for contrast with the heterogeneous firm case
 - In Melitz (2003) firms in country i will differ in their productivity

$p_{ij}(z_i) = \frac{\sigma}{\sigma - 1} \frac{z_{ij}w_i}{z_i}$

KRUGMAN (1980): GRAVITY

- We substitute the optimal pricing eq $X_{ij} = X_j P_j^{\sigma-1} \int_{\Omega_i} \left(\frac{\sigma}{\sigma-1} \frac{\tau_{ij} w_i}{z_i}\right)^1$
- Where N_i is the measure of firms producing in country i
- Compare this to gravity equation in Armington model:
 - Additional term relating to markups: all else equal reduces trade
 - Additional term relating to number of firm: need additional eq. condition

We substitute the optimal pricing equation into the bilateral trade expression:

$${}^{1-\sigma}d\omega = (\frac{\sigma}{\sigma-1})^{1-\sigma}\tau_{ij}^{1-\sigma}(\frac{w_i}{z_i})^{1-\sigma}N_iX_jP_j^{\sigma-1}$$

KRUGMAN (1980): WELFARE

- With firm profits the real wage no longer equals welfare of consumers
- Can derive an expression for real wages similar to Armington model:

Recall from Armington:

- $U_j = \frac{w_j}{P} = c$
- Last equality because Krugman assumed $a_{ii} = 1 \forall j, i$

Need an additional restriction: will assume free entry driving profits to zero

$$\frac{W_j}{P_j} = \left(\frac{\sigma - 1}{\sigma}\right) N_j^{\frac{1}{\sigma - 1}} Z_j \lambda_{jj}^{\frac{1}{1 - \sigma}}$$

$$a_{jj}^{\frac{1}{\sigma-1}}A_{j}\lambda_{jj}^{\frac{1}{1-\sigma}} = A_{j}\lambda_{jj}^{\frac{1}{1-\sigma}}$$

NEW GAINS FROM TRADE

NEW SOURCES OF GAINS

- Get access to foreign varieties+love for varieties [Krugman with CES]
- Lower price from larger scale at home firms [Krugman without CES]
- Lower price from decrease in markup [Krugman without CES]
- Selection of better firms? [Not yet, all firms the same]
 - Melitz (2003) [his JMP!!!] which is up next