INTERNATIONAL TRADE - ECON 245 FABIAN ECKERT

TECHNOLOGY DIFFERENCES

LITERATURE OVERVIEW

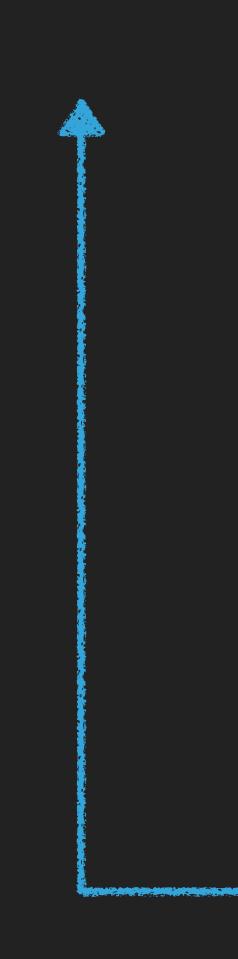
- ▶ In the HOV model we assumed FPE.
 - Only proved for 2 by 2 case
 - First extends to general N by N case, then asymmetric N by M cases
- Key generalizations of Stolper-Samuelson and Ryvczynski:
 - For a change in the price of each good there will exist some factor that gains in real terms and another that loses.
 - For an increase in the endowment of each factor there myst be a good whose output and another good whose output falls

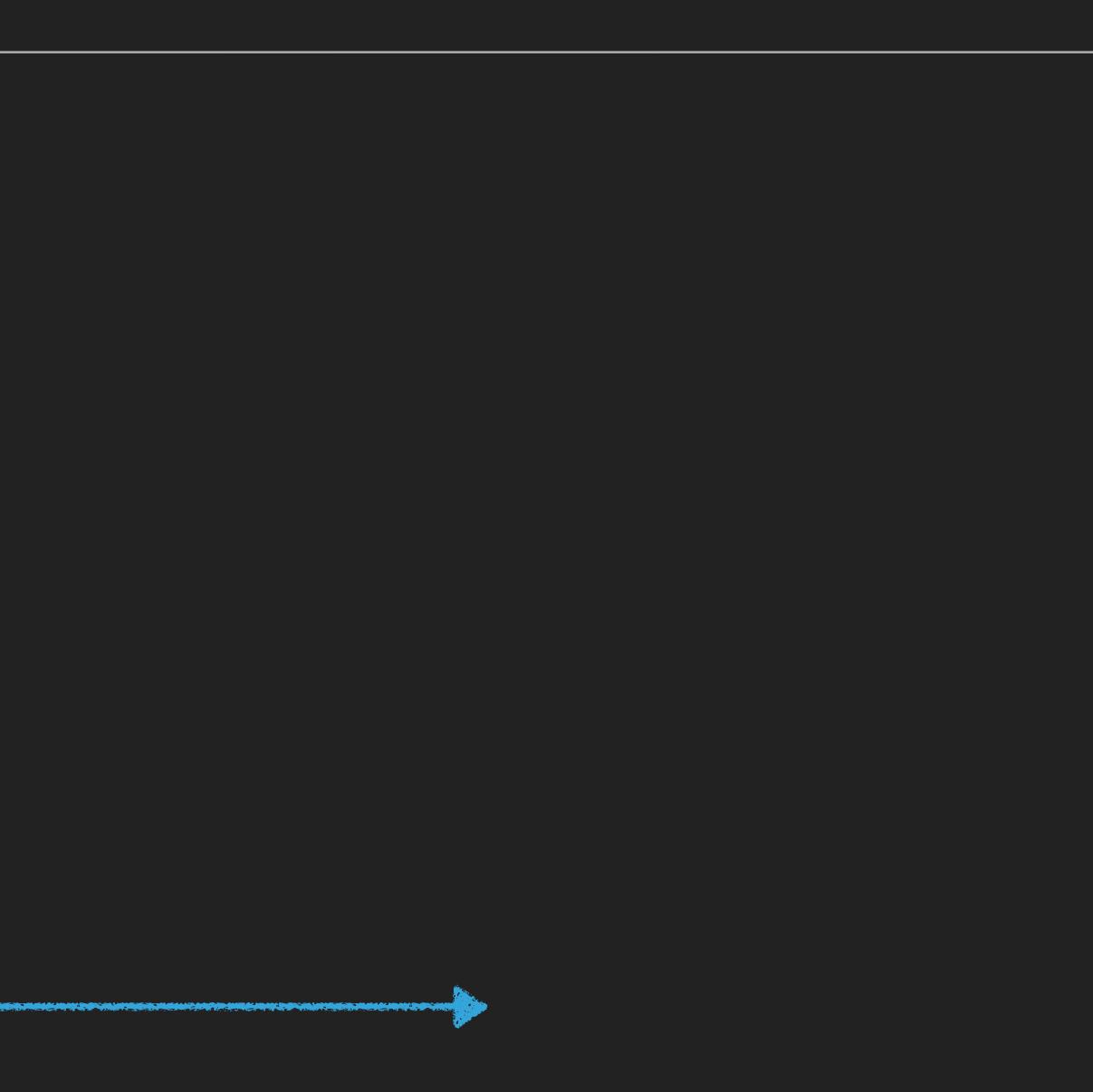
SANUELSON (1977)

- \triangleright Continuum of industries indexed by $z \in [0,1]$
- Perfect Competition
- > $a(z), a^{\star}(z)$ units of labor required to produce good z at home and abroad
- Single factor of production is labor: L, L^{\star} workers at home and abroad
- Workers have Cobb-Douglas preferences:

$$U = \int_0^1 \ln \left[c(z) \right] dz, U^* = \int_0^1 \ln \left[c^*(z) \right] dz$$

- Define relative efficiency in producing good $z: A(z) \equiv a^*(z)/a(z)$
- Prices under autarky in each country are: $p(z) = a(z)w, p^* = a^*(z)w^*$
 - Under free trade $p(z) = p^* = \min(a(z)w, a^*(z)w^*)'$
 - "Cutoff good" z' such that $w/w^* = A(z')$
 - (0,z') are produced in home country, rest abroad
 - Vorld expenditure on domestic good $z'(wL + w^*L^*)$





- Labor market clearing at home implies
- The intersection of A(z) and B(z) pin down z'
- \blacktriangleright B(z) slopes upward:
 - higher demand for home goods leads to a higher relative home wage
- \blacktriangleright A(z) slopes downward:
 - \triangleright Higher relative wage makes home less competitive for given good z

$z'(wL + w^{\star}L^{\star}) = wL \Rightarrow w/w^{\star} = (z'/(1 - z'))(L^{\star}/L) \equiv B(z')$

GAINS FROM TRADE

- \triangleright Consumption of good z is given by w/p(z)Vinder autarky p(z) = a(z)w so that welfare of consumers is simply: $U_A \equiv - \int_{-\infty}^{1} \ln\left[a(z)\right] dz$
- Vinder free trade [z',1] are produced abroad:

 $U_T \equiv -\int_0^{z'} \ln\left[a(z)\right] dz + \int_{z'}^1 \ln\left[w/(a^*(z)w^*)\right] dz$

GAINS FROM TRADE

- Under free trade [z',1] are produced abroad:
- Both countries gain from trade if 0 < z' < 1 and A(0) > A(z') > A(1)
- Gains from trade even if one country has the absolute advantage for all z
 - Simply offset by high wage which makes production of some z too expensive

$U_T - U_A = \int_{-1}^{1} \ln \left[A(z') / A(z) \right] dz \quad U_T^{\star} - U_A^{\star} = \int_{0}^{z'} \ln \left[A(z) / A(z') \right] dz$

GAINS FROM TRADE: POPULATION GROWTH

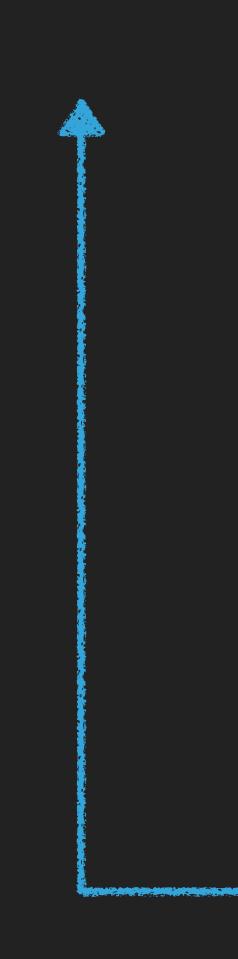
- If the foreign country grows, it increases the market size for home
 - The B(z) curve shifts to the left, so that w/w^* rises
- ► Taking total derivative+using Leibniz integral rule we can sign welfare effect: $dU_T = (1 - z') \left(\frac{dw}{w} - \frac{dw^*}{w^*} \right) > 0 \quad dU_T^* = z' \left(\frac{dw^*}{w^*} - \frac{dw}{w} \right) < 0$
- This does not capture much of the growth we see say in China
 - What about technological progress instead of population growth?

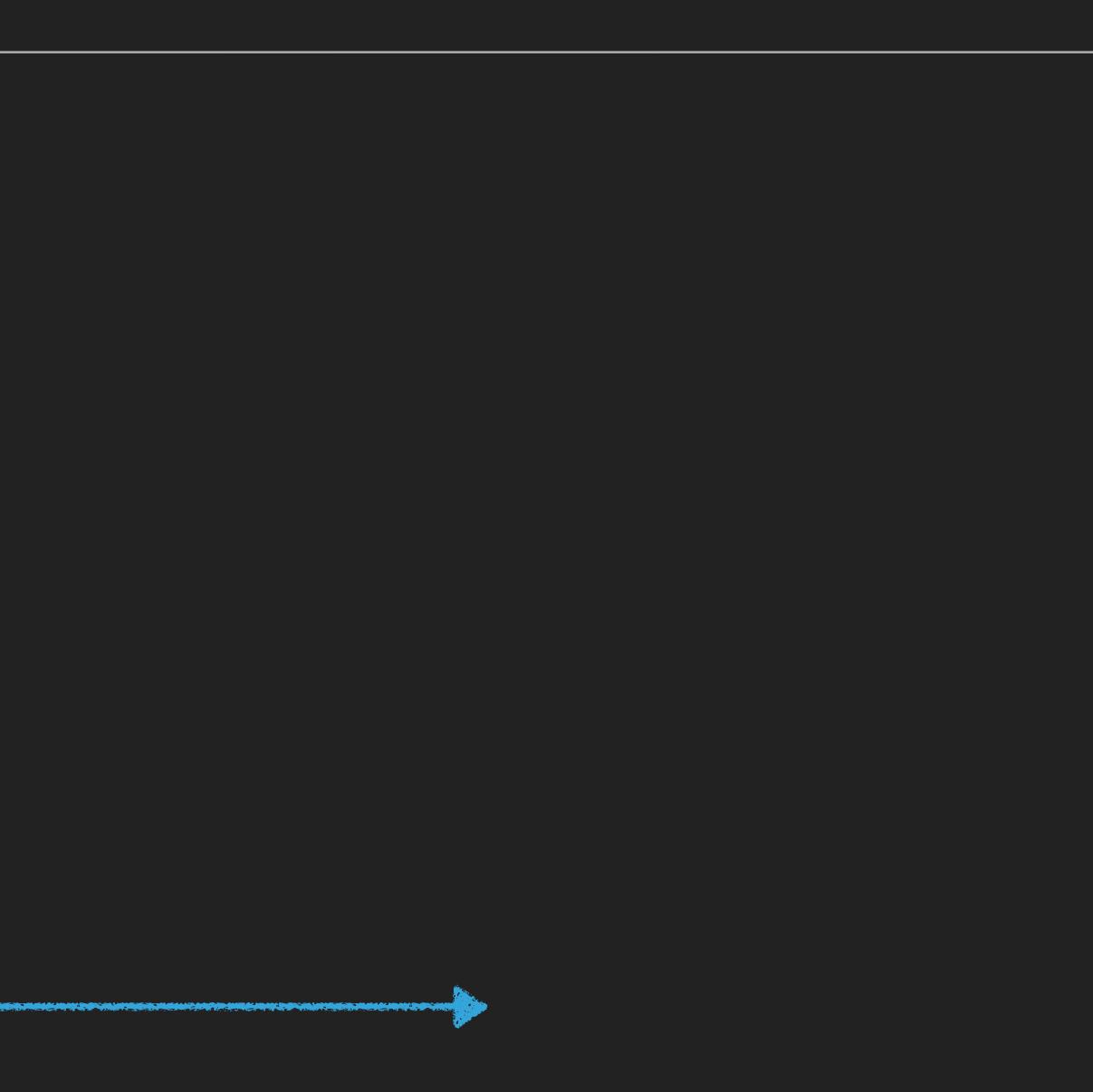
GAINS FROM TRADE: TECHNOLOGICAL PROGRESS

- We model reductions in $a(z), a^{\star}(z): g(z) = -d \ln[a(z)], g^{\star}(z) = -d \ln[a^{\star}(z)]$
- ► Taking total derivatives and using Leibniz rule once more: $dU_T = \int_0^{z'} g(z)dz + \int_{z'}^1 g^*(z)dz + (1-z')(dw/w dw^*/w)$
- Growth has a positive direct effect, but once agains alters the TOT
- Use $\ln A(z') = \ln B(z')$ to solve for wage change expression:

$$dw/w - dw^{\star}/w = \varphi(z') [g($$

 $(z') - g^{\star}(z')$ where $\phi(z') < 1$



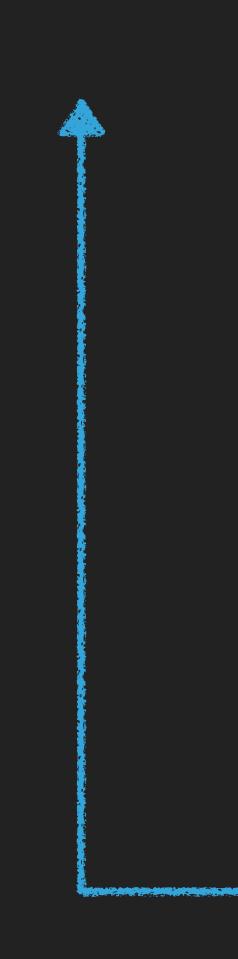


SAMUELSON (1980)

- > DFS also applied their modeling insights to create a $2 \times 2 \times \infty$ HO model
- Labor and capital are factors; home is labor abundant
 - \blacktriangleright Continuum of goods $z \in [0,1]$
 - Vinit cost function for good z: c(w)
 - Leontief production function with same technologies home+abroad
 - Index goods so that $a_L(z)/a_k(z)$ is non-decreasing in z

$$r, r, z) = wa_L(z) + ra_K(z)$$

- Assume no FPE. Since home is abundant in labor: $w/r < w^*/r^*$
- \triangleright With free trade the unit price of good z is given by:
 - $p(z) = p^{\star}(z) = \min\{c(w, r, z), c(w^{\star}, r^{\star}, z)\}$
- A useful object is the ratio of unit costs at home and abroad: $\frac{c(w, r, z,)}{c(w^*, r^*, z)} = \frac{(w/r) [a_l(z)/a_k(z)] + 1}{(w^*/r^*) [a_l(z)/a_k(z)] + 1} \frac{r}{r^*}$ Given assumptions this is non-increasing in z



This looks very similar to A(z) before! Highlights similarity of the two models once you have a continuum of goods!

- > There exists then again a cutoff good z' where unit costs are equal
- So foreign country has CA in capital intensive good and will export it; home has CA in labor intensive good and will export that
 - This is in line with our assumption on labor abundance of home
- Aside: the FPE set is now smooth, and production indeterminate within it
 - Outside the FPE set, contrary to usual case with large number of goods there is no production indeterminacy with a continuum of goods



DAVIS AND WEINSTEIN 2001

- data.
 - But how much technological heterogeneity is needed?
- Davis and Weinstein (2001) propose an elegant way of answering this
- Key insights: Without FPE capital-labor ratios of traded goods must be systematically related to each country's endowments.
 - its traded goods.

Trefler showed that technology differences are key to reconcile HOV model with

Higher capital-labor ratio in home, implies higher capital/labor intensities in all

DAVIS AND WEINSTEIN 2001

- capital to labor endowment; random error ϵ^i_{ik}
- 20 OECD countries, 34 goods, 2 factors (capital+labor) in 1985

DW model relationship btw factor intensities and endowments as follows: $\ln a_{ik}^i = \alpha^i + \beta_{ik} + \gamma_k (K^i/L^i) + \epsilon_{ik}^i$

countries $i = 1, \dots, C$; traded goods $j = 1, \dots, N$; factors $k = 1, \dots, M$; (K^i/L^i)

 $\triangleright \alpha^i$ captures general technology differences across countries, β_{ik} differences across sector-factor pairs, and γ_k differences dependent on factor endowments

DAVIS AND WEINSTEIN 2001

- \blacktriangleright Using different variants of this regression that construct the tech matrix A^i
 - Use these resulting technology matrices to construct the factor content of trade
- Does the factor content of trade match relative endowments?
 - ▶ If all OECD countries use same tech (β_{ii}) sign test right 47% of cases
 - ▶ If also included general technology differences (α^i) 50%
 - If allow technologies to vary with endowments (γ_k) 86%
 - If model exports as proportional to destination GDP: 92%
- They systematically show importance of each modeling assumption in closing gap