INTERNATIONAL TRADE - ECON 245 FABIAN ECKERT

HECKSCHER-OHLIN MODEL

- Assumptions:
 - Identical technologies across countries
 - Identical and homothetic tastes across countries
 - Free trade in goods; no trade in factors
 - Different relative factor endowments across countries
 - No FIRs and hence FPE, if countries within cone of diversification

HECKSCHER-OHLIN-SAMUELSON (HOS) MODEL: 2 BY 2 BY 2 VERSION

- We assume WLOG:
 - Assume $L/K > L^*/K^*$ and identical labor endowments $L = L^*$
 - Sector 2 is capital intensive
 - Trade is balanced (value of imports = value of exports)
- Question: What is the pattern of trades in goods between countries?

Theorem (Heckscher-Ohlin): Each country will export the good that uses its abundant factor intensively.

HECKSCHER-OHLIN-SAMUELSON (HOS) MODEL: 2 BY 2 BY 2 VERSION

- Can both countries have the same autarky price?
 - Rybczynski tells us no! y_1/y_2 must be higher lower in foreign in equilibrium.
 - Define excess demand function for good 1, z(.).
 - But then $z(p^a) = 0$ and $z^*(p^a) > 0$, likewise $z(p^{a*}) < 0$ and $z^*(p^{a*}) = 0$
 - But then by continuity of z(.), $\exists p$, s.t. $p^a , <math>z(p) + z^*(p) = 0$
 - Equilibrium price lies between autarky prices

HECKSCHER-OHLIN-SAMUELSON (HOS) MODEL: 2 BY 2 BY 2 VERSION

- The Law of Comparative Advantage then tell us that home is exporting good 1!
- The Stolper-Samuelson Theorem tell us what factors win and lose in each country in real terms (!):
 - Recall for an exogenous price increase in the good using labor intensively: $\hat{r} < 0 < \hat{p} < \hat{w}$
 - By implication wages rise in home and fall in foreign when trade is liberalized!
- Factor content implications: export abundant factor, import scarce factor

HECKER-OHLIN-VANEK (HOV) MODEL: N BY N BY N VERSION

- Many factors and goods and countries.
- Do not keep track of the trade patterns in individual goods
 - Instead keep track of which factors a country imports and exports
 - Lot of tests of this factor content idea
- Assume away FIRs. Provided countries have endowments within cone of diversification this implies equalized factor prices.
- Bottom line of much of the empirical work: HOV model performs quite poorly unless we dispense with assumption of identical technologies which brings us back to Ricardo

HECKSCHER-OHLIN-VANEK MODEL

- Many country, many industry, many factor version
- Countries i = 1...C, industries j = 1...N and factors k or l = 1...M
- $\land M \times N$ matrix $A = [a_{ik}]'$ factors needed for one unit of output
- > Y^i, D^i are vector of output and demand for country $i, T^i = Y^i D^i$ equals the vector of net exports for country *i*
 - Factor content of trade" is $F^i \equiv AT^i$

HECKSCHER-OHLIN-VANEK MODEL

- The HOV model relates a country's endowments to the factor content of trade.
- The endowments of a country are denoted: $AY^i = V^i$
- > Homothetic preferences+free trade implies $D^i = s^i D^w$
 - sⁱ share of country i in world consumption
- Vorld consumption = world production: $AD^{i} = s^{i}AD^{W} = s^{i}AY^{W} = s^{i}V^{W}$
 - It follows: $F^i \equiv AT^i = V^i s^i V^W$
 - Statement of the Heckscher-Ohlin-Vanek Theorem

LEONTIEFS PARADOX

Leontief (1953) was the first to confront HO model with data.

Under assumption hat US was capital abundant at odds with HO prediction

ports	Imports	
2.5	3.1	
182	170	
3700	18200	

LEONTIEF PARADOX

- Potenital Explanations:
 - U.S. and foreign technologies are not the same
 - Ignore factors such as land
 - Need to disaggregate labor by skill
 - Data for 1947 unusual due to WWII
 - Trade was not free but costly
- Leamer (1980): Leontief has performed the wrong test!

HECKSCHER-OHLIN-VANEK MODEL

- Leamer (1980) defines capital abundance of i as $K^i/K^W > L^i/L^W$
- exceeds the capital-labor ratio embodied in consumption:
 - $K^i/L^i > (K$
- Turns out reformulating the Leontief Paradox in these terms resolves it!
 - and trade was unbalanced in 1947

Theorem (Leamer 1980): If capital is abundant relative to labor in country *i*, then the HOV theorem implies that the capital-labor ratio embodied in production for country i

$$(L^i - F_k^i)/(L^i - F_l^i)$$

Key: can show Leontief's test depends on trade balance and Leamer's did not,

LEONTIEFS PARADOX REVISITED

Leamer instead computed the following

Production is indeed more capital intensive than consumption

ing table:	
duction	Consumption
327	305
million	45 million
949	6737

EMPIRICAL TESTS OF THE HOV MODEL

- Leontief 1953
- Baldwin 1971
- **Leamer 1980**
- Leamer 1984
- Bowen Leamer Sveikaukas 1987
- Tefler 1995
- Tefler 1993a
- Trefler and Zhu 2010
- Bernhofen and Brown 2004a

BALDWIN 1971

- If the number of goods equals the number of factors, A is square so that: $T^i = A^{-1}(V^i s^i V^W)$
- Baldwin (1971) tests this equation treating T^i and A as data
 - Run across industries for the United States in 1960
- BUT makes mistake and regresses T^i on A, not its inverse!
- Regresses adjusted net exports on labor/capital requirements for one unit of production.

LEAMER 1984

- Uses the same equation but takes endowments not technologies as data.
- Run across different countries *j*, written as: $T_j^i = \sum \beta_{jK} (V_k^i -$
- "Rybczynski" coefficients can be positive or negative
- The theory implies a linear fit so look at R^2 as "test" of the theory
 - Range from .13 to almost 1.
 - \triangleright R^2 is a weak measure of validity of a theory

$$-s^{i}V_{k}^{W}$$
), $i = 1, ..., C$

BOWEN LEAMER SVEIKAUKAS 1987

- First "full" test of the HOV theorem.
- Two tests of central equation: a sign test and a rank test:
 - $sign(F_k^i) = sign(V_k^i s^i)$
 - $F_k^i > F_l^i \Leftrightarrow (V_k^i s^i V_k^W) > (V_k^i)$
- What fraction of these relationships is as predicted by the model
 - Sign test 50% of cases, rank test 60% of cases not much better than random!

$${}^{i}V_{k}^{W}$$
), $i = 1, ..., C; k = 1, ..., M$
 ${}^{i}_{l} - s^{i}V_{k}^{W}$), $i = 1, ..., C; k = 1, ..., M$

TREFLER 1993A

- Diagnostic tests suggests "equal technologies" assumption is worst.
- Trefler (1993a) all factors in every country can differ in productivities
 - > π_k^i productivity of factor k in country i relative to the United States
- HOV equation in terms of effective endowments $\pi_k^i V_k^i$: $F_k^i = \pi_k^i V_k^i - s^i \sum_{j=1}^C \pi_k^j V_k^j, i = 1, ..., C; k = 1, ..., M$
- Can fit data exactly (in most cases): test by studying "reasonableness" of π_k^i

TREFLER 1993A

TREFLER 1995

- Second method of introducing technology differences
 - Make factor requirements matrix differ across countries:

- ► HOV equation with such differences: $F^{iUS} \equiv A^{US}T^i = \delta^i V^i \left(s^i \sum_{j=1}^C \delta^j V^j\right)$
 - Introduce additive error and choose δ^i to minimize it.
 - Correlation of δ^i with GDP is .89!

 $\delta^i A^i = A^{US}$

TREFLER AND ZHU 2010

- Suppose we used actual technology data for each country Trefler and Zhu show: $V^{i} - s^{i} \sum_{j} V^{j} = \left(\sum_{\substack{j \neq j \neq j \neq j}} V^{j}\right)$ with actual technologies and if output
- country in proportion to countries GDF
- testable versus what is accounting equation.

$$\sum_{i=1}^{n} F^{ij} - \left(\sum_{j \neq i} F^{ji}\right)$$

ut of every good is exported to each

Warning about using actual technology data and being careful about what is